9311.229 Pi i 4:55
 53106 Sou
 An Assessment of the Reliability and Validity of the Information on Vehicle Fires Contained in the Fatal Accident Reporting System (FARS)

by

Lindsay I. Griffin, III

November 1997

Safety Division . $=$,
Texas Transportation Institute
The Texas A\&M University System
College Station, Texas 77843

TABLE OF CONTENTS

Page
INTRODUCTION 1
PROCEDURE 2
R E S U L T S 8
DISCUSSION 23
RECOMMENDATIONS 29
REFERENCES 32
ジシ：
APPENDIX A：Derivation of the 95 Percent Confidence Intervals in Figure 1
APPENDIX B：Derivation of the Chi－Square Homogeneity Used in Figure 2
APPENDIX C：Six Fatally－Injured Texas Occupants with Fire－Related Injuries Who were Riding in Passenger Cars or Light Trucks that did not Experience Fire
APPENDIX D： 68 Fatally－Injured Texas Occupants Riding in 46 Vehicles with ＂Questionable＂MHE Codes of＂Fire or Explosion
APPENDIX E：Summaries of 44 Texas Police Accident Reports（PARs）for 46 Vehicles that Experienced Fires and for which Fire or Explosion was a ＂Questionable＂Coding of Most Harmful Event

LIST OF FIGURES

Page
Figure 1: Percent of Vehicles Experiencing Fire by State 9
Figure 2: Percent Fire or Explosion Coded as the Most Harmful Event by State 11
Figure 3: Passenger Cars and Light Trucks Involved in Fatal Crashes by "Fire Status" 12
Figure 4: Fatally-Injured Occupants of Passenger Cars and Light Trucks "Fire Status" 12
Figure 5: Fatally-Injured Vehicle Occupants for Whom Injury Codes (N-Codes) are Available by "Fire Status" 13
Figure 6: Fatally-Injured Vehicle Occupants Who Sustained Bum-Related Injuries by "Fire Status". 13
Figure 7: Assessment of the Coding of "Fire or Explosion" as "Most Harmful Event". 19

LIST OF TABLES

Page
Table 1: Summary of the 12 Input Files used in the Current Study 2
Table 2: Passenger Cars and Light Trucks Involved in Fatal Crashes between 1987 and 1989 (FARS Vehicle Files for 1987-89) 3
Table 3: N-Codes hat were Selected as Potential Indicators of Fire-Related Injuries and the Frequencies with which these N -Codes were Actually Used (ICD-9-CM) 5
Table 4: The Numbers of Vehicles, Fatalities, Fatalities with-N-Codes, and Fatalities with Fire-Related N-Codes Recorded between 1987 and 1989 for Passenger Cars and Light Trucks, by Fire Experience and Most Harmful Event 14
Table 5: Fatally-Injured Occupants with Fire-Related Injuries who were Riding in Vehicles that did not Experience Fire, by State 14
Table 6: Review of the Police Accident Reports (PARs) for the Six Texas
'Vehicle Occupant Fatalities that Sustained Fire or bum Related Injuries While Riding in Vehicles that did not Experience Fire 15
Table 7: 1,141 Vehicles for which "Fire or Explosion" was Cited as the Most Harmful Event, by State and by the Validity of the Most Harmful Event Code 20
Table 8: Format for"Most Harmful Event" in the Fatal Accident Reporting System 1998
Coding and Validation Manual 26

푼:-

INTRODUCTION

Since 1975 the National Highway Traffic Safety Administration has, on an annual basis, managed the collection, processing, and storage of all fatal traffic crashes recorded in the United States. This annual census of fatal crashes is referred to as the Fatal Accident Reporting System (FARS).

The raw data for FARS are provided by the states and the District of Columbia and drawn (primarily) from information contained in individual police accident reports (PARs). Accordingly, the quality of the information in FARS is very much dependent upon the quality of the information contained in the original PARs.

Over the years, the FARS data base has been used to study the safety effects of many different vehicle characteristics and devices. A brief list of these characteristics and devices includes: air bags (Evans, 1990; Kahane, 1996), antilock brakes (Kahane, 1994), motorcycle helmets (Evans and Frick, 1987) safety belts (Evans and Frick, 1986; Evans, 1987; Evans, 1988), vehicle size (Kahane, 1997), and vehicle fires (Tessmer, 1994).

The-objective of this report is to assess the reliability and validity of the FARS data base for purposes of studying fires in passenger cars and light trucks and suggest how the reliability and validity of the system might be improved.

In this report the reliability of the fire-related data in FARS is first assessed by examining the consistency with which the states and the District of Columbia report vehicle fires for passenger cars and light trucks. Then, for those vehicles that are reported to have experienced a fire, the consistency with which the states code fire (or explosion) as the "most harmful event" (MHE) for a crashinvolved vehicle is examined. Finally, the reporting of fire-related data in FARS is assessed by comparing the FARS data to the injury information (i.e., N-codes) contained in Multiple Cause of Death (MCOD) files, i.e., injury information obtained from death certificates.

All of the analyses in this report were carried out on data from calendar years 1987 through 1989. Although more recent FARS data were available for analysis, the most recently available MCOD data available were from 1987-1989.

PROCEDURE

INPUT DATA

The input data for the analyses contained in this report consisted of 12 files: nine (9) Fatal Accident Reporting System (FARS) files produced by the National Highway Traffic Safety Administration (NHTSA) and supplied by the Bureau of Transportation Statistics (BTS) and three (3) Multiple Cause of Death (MCOD) files supplied by NHTSA. The MCOD data (i.e., death certificate data) provided by NHTSA were obtained from the National Center for Health Statistics for calendar years 1987 through 1989. NHTSA matched the death certificate information in the MCOD tile to specific FARS cases and added FARS case number (ST-CASE), vehicle number (VEH_NO), and person number (PER-NO) to the MCOD file.

The FARS files consisted of an accident file, a vehicle file, and a person file for each of three years (1987-1989). The three MCOD files were for the same three years (1987-1989).

The 12 input files used in the analyses contained herein are summarized in Table 1.

Table 1: Summary of the 12 Input Files Used in the Current Study							
	File					Year	Cases
1	FARS	Accident File	1987	41,438			
2		Vehicle File	1987	61,836			
3		Person File	1987	111,457			
4	MCOD		1987	43,501			
5	FARS	Accident File	1988	42,130			
6		Vehicle File	1988	62,703			
7		Person File	1988	112,958			
8	MCOD		1988	44,791			
9	FARS	Accident File	1989	40,741			
10		Vehicle File	1989	60,870			
11		Person File	1989	109,866			
12	MCOD		1989	43,291			

FATAL ACCIDENT REPORTING SYSTAmet (FARS) DATA

This report pertains only to passenger cars and light trucks that were involved in fatal crashes, Passenger cars and tight trucks were defined by body type (BODY-TYP $=01,02,03,04,05,06,07$, $08,09,10,11,12,50,51,53,54,55,56,58,59,67,68,69$, or 79). There were 147,253 vehicles meeting this definition, as shown in Table 2. Some 96,301 driver or passenger fatalities in known seat positions (SEAT-POS > 10 and SEAT_POS < 54) were recorded in these 147,253 vehicles.

Table 2: Passenger Cars and Light Trucks Involved in Fatal		
Crashes between 1987 and 1989 (FARS Vehicle Files for 1987-89)		
Body Type (BODY-TYP)	Frequency	Percent
Convertible	729	0.5
2dr Sedan/HT/Coupe	54,153	36.8
3dr/2dr Hatchback	3,896	2.6
4dr Sedan/HT	37,124	25.2
5dr/4dr Hatchback	1,000	0.7
Station Wagon	6,750	4.6
Hatchback/\# doors unk	214	0.1
Other auto	11	0.0
Unk auto type	4,495	3.1
Auto Pickup	568	0.4
Auto Pane!	22	0.0
Short Util/not Trk Based	1,399	1.0
Pickup	29,831	20.3
Pickup w/Slide-in Camper	92	0.1
Cab chassis Based	305	0.2
Truck Based Pane!	13	0.0
Truck Based SW	647	0.4
Truck Based Utility	3,677	2.5
Other Lt Conventional Trk	46	0.0
Unknown Lt Convent Trk	1,130	0.8
SW, Base Body Unknown	5	0.0
Utility, Base Body Unk	47	0.0
Unknown Light Truck	195	0.1
Unknown Trk Type	904	0.6
Total	147,253	100.0

3,963 (2.69 percent) of the 147,253 vehicles in the data set were coded as having experienced a fire (FIRE_EXP) ("fire occurred in vehicle during accident"). The remaining 143,290 (97.3 1 percent) were coded as having not experienced a fire ("no fire").

For 1,207 (30.46 percent) of the 3,963 vehicles that experienced a fire, "fire or explosion" was the most harmful event (M-HARM) for the occupants of that vehicle.' For the remaining 2,756 vehicles that experienced fire (69.54 percent), "fire or explosion" was not the most harmful event.

MULTIPLE CAUSE OF DEATH (MCOD) DATA

The FARS data and MCOD data were merged by calendar year, accident case number (ST-CASE), vehicle number (VEH_NO), and person number (PER-NO). The primary purpose in merging the FARS and MCOD data was to determine the nature of the injuries sustained by the deceased in this study. For the 96,301 drivers and passengers who were fatally injured in passenger cars and light trucks, one or more "nature of injury codes" (N-codes) were available for 90,598 individuals (94.08 percent of the deceased). For the remaining 5,703 fatalities (5.92 percent), no nature of injury codes weré àvailable. ${ }^{2}$
-For each MCOD case (i.e., for each deceased individual in the MCOD data base) up to 14 injury codes (record axis codes) were recorded (REC_CD1 through REC_CD14). Most cases had only two, three, or four record axis codes, however, six of the 90,598 cases had entries for a!! 14 codes.

Record axis codes can represent nature of injury codes (N -codes) or some other code, typically "external cause of injury codes" (E-codes), depending upon the status of a flag or indicator variable. Thus for example, when R FLAG1 equals 1, the code entered for REC_CD1 refers to an N-code; when R_FLAGl equals 0 , the code entered for REC_CDl refers to some other code, most likely an E-code.

For purposes of this study, the full set of N -codes was further subset to define those injury codes that gave some indication that the deceased suffered fire-related or burn-related injuries. These N-codes are shown in Table 3. Included in this subset are all "bum codes" (940-949) as we!! as four codes indicative of the toxic effects of carbon monoxide (986) or some other gas, fume, or vapor (987, 987.8, and 987.9).
'From the FARS 1988 Coding and Validation Manual:
Most harm\&! event is "the major event for this vehicle, even if different from the first harmful event (in the crash)."
"If this vehicle is involved in more than one event which causes fatality to its own occupants or to non-motorists, choose the event which causes the greatest number of fatalities to occupants of this vehicle or to non-motorists (not occupants of other vehicles)."
'Nature of injury codes (N-codes) are defined in the ICD-9-CM, i.e., the "International Classification of Diseases, 9th Edition, Clinical Modification, Volume 1."

Table 3: N-Codes that were Selected as Potential Indicators of Fire-Related Injuries and the Frequencies with which these N-Codes were Actually Used (ICD-9-CM)

Freq

9
3

9 941. 0 Burn of face, head, \& neck, unspecified degree
941. 1 Erythema due to burn [first degree] of face, head, \& neck
941. 2 Blisters with epidermal loss due to burn [second degree] of face, head, \& neck

3 941. 3 Full-thi ckness ski n loss due to burn [third degree NOS] of face, head, \& neck
2 941. 4 Deep necrosis of underlying tissues due to burn [deep third degree] of face, head, \& neck without mention of loss of a body part
941. 5 Deep necrosis of Underlying tissues due to burn [deep third degree] of face, head, \& neck with loss of a body part
942 Burn of trunk
130 942.0 Burn of trunk, unspecified degree
942.1 Erythewa due to burn [first degree] of trunk

4 942. 2 Blisters with epidernal loss due to burn [second degree] of trunk
22 942.3 Full-thickness skin loss due to burn [third degree NOS] of trunk
15 942.4 Deep necrosis of underlying tissues due to burn [deep third degree] of trunk without mention of loss of body part
942. 5 Deep necrosis of Underlying tissues due to burn [deep third degree] of trunk with loss of a body part
943 Burn of upper limb, except wrist \& hand
5 943. 0 Burn of upper limb, except wrist \& hand, unspecified degree
943. 1 Erythema due to burn [first degree] of upper limb, except wrist \& hand

1 943.2 Blisters with epi dernal loss due to burn [second-degree] of upper limb, except wrist \& hand
2 943. 3 Full-thickness skin loss due to burn [third degree NOS] of upper linb, except wrist \& hand
3943.4 Deep necrosis of underlying tissues due to burn [deep third degree] of upper linb, except wist \& hand, without mention of loss of a body part
943. 5 Deep necrosis of underlying tissues due to burn (deep third degree] of upper linb, except wrist \& hand, with loss of a body part
944 Burn of wrist(s) \& hand(s)
2 944. 0 Burn of wrist(s) \& hand(s), unspecified degree
1 944. 1 Erythema due to burn [first degree] of wrist(s) \& hand(s)
944. 2 Blisters with epidermal loss due to burn [second degree] of wrist(s) \& hand(s)

1 944. 3 Full-thickness skin loss due to burn [third degree NOS] of wrist(s) hand(s)
944. 4 Deep necrosis of underlying tissues due to burn [deep thi rd degree] of wrist(s) \& hand(s), without nention of loss of a body part
944. 5 Deep necrosis of underlying tissues due to burn [deep third degree] of wrist(s) \& hand(s), with loss of a body part
945 Burn of lower limb(s)
'4 945. 0 Burn of lower $\operatorname{limb}(s)$, unspecified degree
945.1 Erythem due to burn [first degree] of lower limb(s)
$4 \quad 945.2$ Blisters with epidernal loss due to burn [second degree] of lower limb(s)
7 945. 3 Full-thickness skin loss due to burn [third degree NOS] of lower Iinb(s)

Table 3 (continued): N-Codes that were Selected as Potential Indicators of Fire-Related Injuries and the Frequencies with which these N-Codes were Actually Used (ICD-9-CM)

Freq	Code.	Sumary
4	945.4	Deep necrosis of underlying tissues due to burn [deep third degree] of lower linb(s) without mention of loss of a body part
	945. 5	Deep necrosis of underlying tissues due to burn [deep third degree] of lower limb(s) with loss of a body part
	946	Burns of multiple specified sites
	946.0	Burns of multiple specified sites, unspecified degree
	946.2	Blisters with epideraal loss due to burn [second degree] of multiple specified sites
	946. 3	Full-thickness skin loss due to burn [third degree NOS] of multiple specified sites
	946.4	Deep necrosis of underlying tissues due to burn [deep third degree] of multiple specified sites, without mention of loss of a body-part
	946.5	Deep necrosis of underlying tissues due to burn [deep third degree] of multiple specified sites, with loss of a body part
	947	Burn of internal organs
1	947.0	Burn of mouth \& pharynx
14	$\text { 947. } 1$	Burn of Iarynx, trachea, \& I ung
	947.3	Burn of gastroi ntestinal tract
	947.4	Burn of vagina \& uterus
3	947.8	Burn of other specified sites of internal organs
2	947.9	Burn of internal organs, unspecified site
	948	Burns classified according to extent of body surface involved
4	948.0	Burn [any degree] involving less than 10 percent of body surface
3	948. 1	Burn [any degree] involving 10-19 percent of body surface
1	948. 2	Burn [any degree] i nvol vi ng 20-29 percent of body surface
9	948. 3	Burn [any degree] involving 30-39 percent of body surface
12	948.4	Burn [any degree] involving 40-49 percent of body surface
5	948.5	Burn [any degree] involving 50-59 percent of body surface
8	948.6	Burn [any degree] involving 60-69 percent of body surface
12	948.7	Burn [any degree] involving 70-79 percent of body surface
12	948.8	Burn [any degree] involving 80-89 percent of body surface
458	$\begin{aligned} & 948.9 \\ & 949 \end{aligned}$	Burn [any degree] invol ving 90 percent or nore of body surface Burn, unspecified site
899	949.0	Burn of unspecified site, unspecified degree
1	949. 1	Erythema due to burn [first degree], unspecified site
1	949. 2	Blisters with epidernal loss due to burn [second degree], unspecified site
69	949.3	Full-thickness skin loss due to burn [third degree NOS], unspecified site
25	949.4 949.5	Deep necrosis of underlying tissues due to burn [deep third degree], unspecified site without mention of loss of a body part
		unspecified site with loss of a body part
154	986	Toxic effect of carbon monoxide
	987	Toxic effect of other gases, funes, or vapors
317	987.8	Toxic effect of other specified gases, funes, or vapors
95	987.9	Toxic effect of unspecified gas, fume, or vapor

Note in Table 3 that many of the N -codes that might have been used to give indication of a tire-related or bum-related injury were, in fact, not used. The three codes that were used most often were:
949.0 Bum of unspecified site, unspecified degree ($\mathrm{N}=899$)
948.9 Bum [any degree] involving 90 percent or more of body surface ($\mathrm{N}=458$)
987.8 Toxic effect of other specified gases, fumes, or vapors ($\mathrm{N}=317$)

ANALYSES

Two analyses are described in this report. In the first analysis FARS data are accessed to determine how consistently (i.e., how reliably) the individual states are reporting vehicle fires and "most harmful event" (MHE). Does each state report about the same percentage of passenger cars and light trucks experiencing fires? Or, do the states differ in their reporting of vehicle fires? Given that a vehicle has experienced a fire, is "fire or explosion" equally likely to be cited as the MHE in all states? Or, are some states more apt than others to report "fire or explosion" as the "most harmful event"?

In the second analysis-the injury information in the MCOD files is compared to the crash circumstances in FARS. If, for example, the driver of a passenger car sustains "deep necrosis of underlying tissues due to bum [deep third degree] of face, head, $\&$ neck without mention of loss of a body part" (ICD9 94 1.4), does FARS indicate that the vehicle in which the deceased was riding "experienced fire"? Does FARS indicate that "fire or explosion" was the MHE for this vehicle? Conversely, if there is no indication in the MCOD files that a decedent sustained any fire-related or burn-related injuries, does FARS indicate that the vehicle in which the deceased was riding "experienced fire" or that "fire or explosion" was the MHE?

RESULTS

FIRE EXPERIENCE BY STATE

Although the average number of passenger cars and light trucks that experienced fire in the United States was 2.69 percent, for the 50 states and the District of Columbia "percent of vehicles experiencing fire" ranged from a low in Utah of 0.11 percent (one vehicle experienced fire; 887 did not) to a high in Hawaii of 5.30 percent (23 vehicles experienced fire; 411 did not).

Figure 1 shows the rank ordering of states by "percent of vehicles experiencing fire." The vertical line in this figure represents the 2.69 percent of all passenger cars and light trucks that experienced fire nationwide. The horizontal lines around the data points represent the 95 percent confidence intervals about the individual state estimates. ${ }^{3}$

The "fire estimates" from 16 states (HI, MN, IA, AR, OK, OR, CT, KY, MA, WI, MO, LA, CA, IN, IL, and GA) are significantly above the national average. For 12 states (AZ, MD, NY, NC, NJ, NM, VA, SC, FL, ID, MS, and UT), the "fire estimates" are significantly below the national average.

Visual inspection of the data in Figure 1 suggests that there is great variability among the individual state (and District of Columbia) estimates of the percents of passenger cars and light trucks that experience fire. This suggestion can be confirmed statistically through a chi-square (χ^{2}) analysis. The calculated χ^{2} (referred to as χ^{2} homogeneity) for these data (with 50 df) is 484.6 (pr <0.000), indicating that the 51 estimates depicted in Figure 1 are so variable that it is extremely unlikely that a!! states (and the District of Columbia) are estimating the same phenomenon.*

MOST HARMFUL EVENT BY STATE

The analysis presented in this section is based on data from 45 states.' For these 45 states,
${ }^{3}$ The procedure for defining the 95 percent confidence intervals about the data points in Figure 1 is provided in Appendix A.
*This chi-square $\left(\chi^{2}\right)$ analysis is described in Appendix B
‘Collectively, four states [AK (4), RI (4), VT (9), and WY (5)] and the District of Columbia (8) indicated that 30 passenger cars or light trucks in their jurisdictions experienced fires. For none of these 30 vehicles was "fire or explosion" cited as the MHE. Utah (UT) recorded one vehicle fire. "Fire or explosion" was cited as the MHE for this vehicle. Data from these five states and the District of Columbia were not included in this analysis in order to avoid dividing by zero or taking the natural logarithm of zero. Data from the remaining 45 states (which recorded 99.22 percent of a!! passenger car and light truck fires in the United States) form the basis of the analysis described in this section.

Figure 1: Percent of Vehicles Experiencing Fire by State

1,206 (30.67 percent) of 3,932 passenger cars and light trucks that experienced fire had "fire or explosion" coded as the MHE. Of the 180 vehicles that experienced fire in Illinois, only one (0.56 percent) had fire or explosion listed as the MHE. At the other extreme, in Virginia, 47 (95.92 percent) of 49 vehicles that experienced fire had fire or explosion listed as the MHE.

In Figure 2 the rank ordering of the 45 states by "percent fire/explosion as the most harmful event" is depicted. The 45 data points in this figure are scattered around the national average of 30.67 percent-the percent of vehicles for which "fire or explosion" was cited as the MHE. The 95 percent confidence intervals about the individual state estimates were derived as before. See Appendix A.

For ten states (VA SC, MO, MT, TX, TN, MD, AR, AZ, and CA), the estimates of "fire or explosion" as the MHE are significantly above the national average. For fifteen states (OR, FL, IA, MA, GA, CT, MN, KY, MI, MS, NJ, KS, OK, OH, and IL), the estimates are significantly below the national average.

These data suggest that it is extremely unlikely that the 45 states included in this analysis are estimating (i.e., measuring) the same phenomenon: χ^{2} (with 44 df) equals 498.6 ($\mathrm{pr}<0.000$). This χ^{2} was calculated as before. See Appendix B.

MCOD INJURIES AND FARS CRASH CIRCUMSTANCES

Of the 147,253 passenger cars and light trucks involved in fatal crashes, 143,290 (97.31 percent) did not experience fire. 2,756 vehicles (1.87 percent) experienced fire, but for these vehicles, fire or explosion was not the MHE. Another 1,207 vehicles (0.82 percent) also experienced fire, and for these vehicles, fire or explosion was the MHE. See Figure 3.

Some 96,301 drivers and passengers (SEAT-POS > 10 and SEAT-POS <54) riding in passenger cars or light trucks were fatally injured. Of this number, 92,116 (95.65 percent) were riding in vehicles that did not experience fire, 2,718 (2.82 percent) were riding in vehicles that did experience fire, but fire or explosion was not the MHE, and 1,467 (1.52 percent) were riding in vehicles that did experience fire, and fire or explosion was the MHE. See Figure 4.

For 90,598 (94.08 percent) of the 96,301 fatally-injured vehicle occupants shown in Figure 4, one or more injury codes (N-codes) were available from the MCOD files. 86,662 of the individuals for whom N -codes were available (95.65 percent) were riding in vehicles that did not experience fire. 2,566 individuals with N -codes (2.83 percent) were'riding in vehicles that did experience fire, but fire or explosion was not the MHE. 1,370 other individuals with N -codes (1.51 percent) were riding in vehicles that did experience fire, and fire or explosion was the MHE. See Figure 5.

Of the 1,785 fatally-injured vehicle occupants who sustained "fire-related" injuries (as defined in Table 3), 201 (11.26 percent) were in vehicles that did not experience fire; 659 (36.92 percent) were in vehicles that experienced fire, but fire or explosion was not the MHE; and 925 (51.82 percent) were in vehicles that experienced fire, and fire or explosion was the MHE. See Figure 6.

Figure 2: Percent Fire or Explosion Coded as the Most Harmful Event by State

PASSENGER CARS AND LIGHT TRUCKS INVOLVED IN FATAL CRASHES $(\mathbb{N}=147,253)$

"Fire Status" of Vehicles
No Fire in Vehicle ($\mathbf{N}=\mathbf{1 4 3 , 2 9 0}$)
Fire in Vehicle was not Most Harmful Event ($\mathrm{N}=2,756$)
Fire in Vehicle was Most Harmful Event ($N=1,207$)

Figure 3: Passenger Cars and Light Trucks Involved in Fatal Crashes by "Fire Status"

FATALLY - INJURED OCCUPANTS OF PASSENGER

CARS AND LIGHT TRUCKS ($\mathrm{N}=96,301$)

"Fire Status" of Vehicles

No Fire in Vehicle ($\mathbf{N}=92,116$)
\square
Fire in Vehicle was not Most Harmful Event ($\mathrm{N}=2,718$)
Fire in Vehicle was Most Harmful Event ($N=1,467$)

Figure 4: Fatally-Injured Occupants of Passenger Cars and Light Trucks by "Fire Status"

FATALLY - INJURED VEHICLE OCCUPANTS FOR WHOM N - CODES ARE AVAILABLE $(\mathrm{N}=90,598)$

"Fire Status" of VehiclesNo Fire in Vehicle ($\mathrm{N}=86,662$)
Fire in Vehicle was not Most Harmful Event ($\mathrm{N}=2,566$)
Fire in Vehicle was Most Harmful Event ($N=1,370$)

Figure 5: Fatally-Injured Vehicle Occupants for Whom Injury Codes (N-Codes) are Available by "Fire Status"

FATALLY - INJURED VEHICLE OCCUPANTS WHO SUSTAINED FIRE - RELATED INJURIES ($N=1,785$)

"Fire Status" of Vehicles
No Fire in Vehicle ($\mathrm{N}=201$)
Fire in Vehicle was not Most Harmful Event ($\mathrm{N}=659$)
Fire in Vehicle was Most Harmful Event ($\mathrm{N}=925$)

Figure 6: Fatally-Injured Vehicle Occupants Who Sustained Burn-Related Injuries by "Fire Status"

The data from Figures 3 through 6 are summarized in Table 4.

Table 4: The Numbers of Vehicles, Fatalities, Fatalities with N-Codes, and Fatalities with Fire-Related N-Codes Recorded between 1987 and 1989 for Passenger Cars and Light Trucks, by Fire Experience and Most Harmful Event (FARS/MCOD)				
Most Harmful Event	Fire Experience			
	No Fire		Fire in Vehicle	
No Fire or Explosion	Vehicles Fatalities N -Codes Fire-Related Codes	$\begin{array}{r} 143,290 \\ 92,116 \\ 86,662 \\ 201 \end{array}$	Vehicles Fatalities N -Codes Fire-Related Codes	$\begin{array}{r} \because 2,756 \\ 2,718 \\ 2,566 \\ 659 \end{array}$
Fire or Explosion			Vehicles Fatalities N -Codes Fire-Related Codes	$\begin{array}{r} 1,207 \\ 1,467 \\ 1,370 \\ 925 \end{array}$

FATALLY-INJURED OCCUPANTS WITH FIRE-RELATED INJURIES WHO WERE RIDING IN VEHICLES THAT DID NOT EXPERIENCE FIRE

A state-by-state breakdown of the 201 fatally-injured vehicle occupants with tire-related injuries (for whom seating position was known) who were riding in 178 vehicles that did not experience fire is provided in Table 5. Thirty-one states had one or more occupants with fire-related injuries riding in vehicles that did not experience fire. Texas had six of these cases. More detail on the six Texas cases is provided in Appendix C

Table 5: Fatally-Injured Occupants with Fire-Related Injuries who were Riding in Vehicles that did not Experience Fire, by State

STATE	Frequency	STATE	Frequency	STATE	Frequency
Al abama	2	I ndi ana	2	North Carolina	13
Arizona	2	Kansas	9	Ohio	17
Arkansas	2	Louisiana	10	Okl ahona	2
California	1	Mai ne	3	Pennsylvania	6
Col or ado	2	Maryland	7	South Carolina	21
Connecti cut	1	M chi gan	8	Tennessee	1
Fl ori da	15	Mississippi	13	Texas	6
Georgia	5	Missouri	2	Ut ah	6
Idaho	2	New J ersey	11	Virginia	13
Illinois	3	New York	9	Whshi ngt on	4
				Wisconsi n	3
					$\overline{201}$

For each of the six Texas fatalities shown in Appendix C, photocopies of the original police accident reports (PARs) were obtained and compared to the FARS/MCOD data cited. In Table 6 the observations and conclusions drawn from comparing the original PARs to the FARS/MCOD information are shown.

Table 6: Review of the Police Accident Reports (PARs) for the Six Texas Vehicle Occupant Fatalities that Sustained Fire or Bum Related Injuries While Riding in Vehicles that did not Experience Fire

| $\begin{array}{c}\text { FARS } \\ \text { Case No. }\end{array}$ | $\begin{array}{l}\text { Veh } \\ \text { No. }\end{array}$ | $\begin{array}{l}\text { Per } \\ \text { No. }\end{array}$ | Comments and Conclusions |
| :---: | :---: | :---: | :--- | :--- |\(\left.\left.| \begin{array}{l}According to the PAR two vehicles were involved in this collision.

The driver of the first vehicle sustained "head and internal" injuries.

He was not ejected There were no other fatalities in this crash.\end{array}\right\} \begin{array}{l}There is no reference in the PAR to vehicle fire or occupant bums.

On the basis of the information contained in the PAR, fire experience

for vehicle 1 was "correctly" coded as "no tire occurrence."\end{array}\right\}\)| The N-code for this driver (from the MCOD file) is: Deep necrosis |
| :--- |
| of underlying tissues due to bum [deep third degree] of trunk |
| without mention of loss of body part. If this information from the |
| MCOD file is correct, then, in a!! likelihood, this vehicle did |
| experience a fire. |

Three of the six vehicles shown in Table 6 should have been coded as having experienced a fire. For one of the six vehicles, it appears that "no tire" was the correct code, even though the driver of that vehicle was burned. And, for two of the six vehicles, it is still not clear whether or not the vehicle experienced a fire.

FATALLY-INJURED OCCUPANTS RIDING IN VEHICLES THAT EXPERIENCED FIRE AND FOR WHICH FIRE OR EXPLOSION WAS THE MOST HARMFUL EVENT

1,467 individuals (for whom seating position was known) were fatally-injured in vehicles that experienced fire and for which fire or explosion was the MHE. For 1,370 (93.39 percent) of these individuals, one or more N-codes were available. For 925 (67.52 percent) of these 1,370 individuals, there is indication of fire-related injury (see Table 3). However, for 445 (32.48 percent) of the fatallyinjured occupants who were riding in vehicles for which fire or explosion was the MHE in the crash and for whom one or more N -codes were available, no fire-related injuries areevident.

- : It is quite possible that some individuals who did not sustaincund injuries could very well have been riding in vehicles that experienced fire, and "fire or explosion" may indeed have been the MHE for those vehicles. Imagine, for example, that three individuals were riding in a vehicle that left the road, rolled over, and caught fire. One individual is ejected from the vehicle prior to the vehicle catching fire, but dies of mechanical trauma. The other two occupants die of firerelated injuries. The MHE for this vehicle is correctly coded as "fire or explosion" even though one ${ }^{-}$ of the three vehicle occupants did not sustain fire-related injuries. ${ }^{6}$

To determine the reliability with which "fire or explosion" was cited as the MHE for the passenger cars and light trucks in Table 4, each of the 1,467 occupant fatalities in these vehicles was reviewed to determine the nature of the injuries (i.e., the N -codes) he or she sustained. The 1,467 fatally-injured occupants in this analysis were found to be riding in 1,141 vehicles, i.e., passenger cars or light trucks.

The N -codes for each of the 1,467 fatally-injured occupants riding in these 1,141 vehicles were examined and divided into three groups:

- Fire-Related: The deceased had one or more N -codes indicating a fire-related injury (see Table 3). 925 individuals were contained in this group.
- Not Fire-Related: The deceased did not have any N-codes indicating a fire-related injury (see Table 3). 445 individuals were contained in this group.
- Unknown: No N-codes were available for the deceased. 97 individuals were contained in this group.

[^0]For each of the 1,141 vehicles of interest, the numbers of occupant fatalities and the types of injury sustained (i.e., fire-related, not fire-related, unknown) were tallied. On the basis of the number of fatally-injured occupants in a given vehicle, and the types of injuries those occupants sustained, the determination was made that the coding of the MHE for the vehicle as "fire or explosion" was:
. OK A majority of fatalities in the vehicle had N -codes indicating fire-related injuries

- Questionable A majority of fatalities in the vehicle had N-codes that did not indicate firerelated injuries
- Maybe An equal number of fatalities did and did not have fire-related N -codes, or

Because some of the deceased did not have N -codes, it was not clear whether there were more, fewer, or an equal number of fatalities with and without firerelated N -codes

Examples

. OK
In 1987 the first vehicle in state case 10503 contained only one fatally-injured occupant, but that occupant sustained fire-related injuries. This case was labeled OK.

In 1989 the first vehicle in state case 190275 contained three fatally-injured occupants, two of whom had fire-related injuries. This case was labeled OK.

- Questionable In 1987 the second vehicle in state case 50194 contained two fatally-injured occupants, neither of whom had fire-related injuries. This case was labeled questionable.

In 1989 the fourth vehicle in state case 481638 contained three fatalities, none of whom sustained fire-related injuries. This case was labeled questionable.

- Maybe In 1988 the first vehicle in state case 290810 contained three fatalities, for whom no N -codes were available. This case was labeled maybe.

In 1989 the first vehicle in state case 480145 contained two fatalities, one of whom sustained fire-related injuries. This case was labeled maybe.

For 707 (6 1.96 percent) of the 1,141 vehicles that experienced fire, the coding of "fire or explosion" as the MHE was reasonable, i.e., "OK." For 326 (28.57 percent) vehicles, the coding
seemed inconsistent, i.e., "Questionable."' For 108 (9.47 percent) vehicles, the coding was unclear, i.e., "Maybe." See Figure 7.

VEHICLES WITH ONE OR MORE OCCUPANT FATAUTIES AND FOR WHICH "FIRE/EXPLOSION" WAS MOST HARMFUL EVENT ($N=1,141$)

Figure 7: Assessment of the Coding of "Fire or Explosion" as "Most Harmful Event"

Subsetting the 1,141 vehicles in Figure 7 by state, it is apparent that some states have a much higher percentage of "questionable" fire or explosion codings than others (Table 7). In California, for example, only 38 (17.04 percent) of the 223 vehicles that were coded with "fire or explosion" as the MHE are "questionable." In Florida, 18 (75.00 percent) of the state's 24 "fire or explosion" codings are "questionable."

To better understand the "questionable" coding of MHE, photo copies of the 44 PARs describing the 46 Texas vehicles with questionable MHE's shown in Table 7 were reviewed.
'Some 260 of these 326 "questionable" vehicles (79.75 percent) contained one (and only one) occupant for whom N -codes were available-and these codes gave no indication of fire-related injuries for any of these 260 individuals. Another 51 vehicles (15.64 percent) contain exactly two occupants for whom N-codes were available. None of these 102 fatally-injured occupants were coded with fire-related injuries. Six vehicles each contained three fatally-injured occupants for whom N codes were available-none of which were indicative of tire-related injuries. And, three vehicles contained four fatally-injured occupants with N -codes that showed no fire-related injuries.

Table 7: 1, 141 Vehicles for which "Fire or Explosidn" was Cited as the Most Harmful Event, by State and by the Validity of the Most Harmful Event Code				
STATE	Validity of Mbst Harnful Event Code			Tot al 21
	Maybe	OK	Questi onable	
Alabama	3	9	9	
Arizona	1	19	2	22
Arkansas	5	7	24	36
California	12	173	38	223
Col orado	0	6	3	9
Connecticut	2	4	2	8
Delaware	0	,	1	2
Florida	2	4	18	24
Georgi a	5	18	4	27
Hawaii	0	1	3	4
I daho	1	1	1	3
Illinois	0	1	0	1
I ndi ana	3	22	16	41
Iowa $¢ \bar{B}_{\text {B }}$	$\therefore 90$	- 12	2	14
Kansas	0	1	1	2
Kent ucky	2	11	0	13
Louisiana	3	22	9	34
Maine	0	4	3	7
Maryland	5	10	7	22
Massachusetts	0	6	7	13
Michigan	0	12	3	15
M nnesota	0	11	2	13
Mississippi	0	2	0	2
Missouri	3	33	31	67
Mont ana	1	3	6	10
Nebraska	0	3	3	6
Nevada	0	3	2	5
New Hampshi re	0	0	1	1
New J ersey	0	2	1	3
New Mexi co -	D	5	0	5
New York	7	30	8	45
North Carolina	2	18	15	35
North Dakota	0	0	1	1
Ohio	1	1	1	3
Oklahoma	0	3	0	3
Oregon	0	12	3	15
Pennsyl vani a	9	33	4	46
South Carolina	6	18	14	38
South Dakota	0	1	0	1
Tennessee	5	45	7	57
Texas	16	86	46	148
Ut ah	0	0	1	1
Virginia	8	21	16	45
Nashi ngt on	1	8	6	15
Nest Virginia	0	10	0	10
Wisconsin	5	15	5	25
total	$\overline{108}$	$\overline{707}$	$\overline{326}$	1141

Appendix D contains FARS/MCOD information on the 68 decedents who were riding in these 46 vehicles. Appendix E briefly summarizes each of the 44 crashes in which these 46 vehicles were involved and shows the N -codes (from MCOD) that were cited for the decedents.

From the information contained in Appendix D (and Appendix E), it should be noted that 38 (55.88 percent) of the 68 decedents had one, and only one, N-code: (959.8) "Other $\&$ unspecified injury to other specified sites, including multiple." Although this code might be used to refer to a decedent who sustained fire-related or burn-related injuries, it might also be used to describe injuries to individuals who sustained only mechanical trauma. Thus, for purposes of determining whether or not a given decedent suffered fire-related or bum-related injuries, this coding is unhelpful, and unfortunate.

It should also be noted that many of the crashes described in Appendix E were extremely violent events that resulted in multiple injuries to individual vehicle occupants, any one of which might have served as the proximal cause of death for the deceased. For the decedents riding in vehicles for which fire or explosion was the MHE, some of the injuries described in the PARs include:

Finally, in reviewing the PARs shown in Appendix E, it was often difficult for the author to decide how to code MHE for a given crash-involved vehicle. Consider the following three examples:

- Example 1 (481582 in 1988): The driver of a tow truck was struck in the side by a train. His vehicle "exploded." The vehicle came to rest approximately 120 feet from impact, The driver, the lone occupant of the vehicle, sustained fatal injuries: "chest trauma - burned." Furthermore, the vehicle "overturned on deceased after being ejected - burned." The N-code for the deceased was: Other $\&$ unspecified injury to other specified sites, including multiple.

The fact that this vehicle "exploded" and that the deceased driver "burned" may be sufficient reason to code MHE as "fire or explosion." However, among the various possible codes for MHE there is another code that would seem a reasonable alternative: Railway Train. ${ }^{8}$

[^1]- Example 2 (481672 in 1989): Vehicle one "crossed (the) double line"on the highway and struck vehicle two (a tractor semi-trailer) with the left front of his vehicle. Vehicle one "exploded." The deceased driver of vehicle one, the $\square \boldsymbol{\bullet} \boxed{\square}$ occupant of the vehicle, was "severely burned." The N-code for the deceased was: Other \& unspecified injury to trunk.

Might "motor vehicle in transport" have been cited as the most harmful event in this crash?

- Example 3 (482321 in 1989): The driver of a stolen vehicle "appeared to have been going at a high rate of speed and lost control causing the vehicle to slide sideways before making impact with utility pole." The vehicle caught fire. The fatally injured driver was "burned." The N -code for the deceased was: Intracranial injury of other \& unspecified nature.

Might "utility pole" have been cited as the most harmful event in this crash?
In summary, it was found that the 46 Texas vehicles for which "fire or explosion" was a "questionable" coding of MHE did in fact experience fires. Furthermore, the great majority of the decedents riding in these vehicles appear to have sustained fire-related or bum-related injuries. Accordingly, most of these "questionable" MHE codings are defensible. It should be added, however, that many of the 68 fatally-injured occupants identified in Appendices D and E appear to have sustained multiple injuries, and often massive injuries. For these individuals, "fire or explosion" may not have been the proximal cause of death. Stated in other words, for many of the individuals identified in Appendices D and E, even in the absence of a vehicle fire, it seems reasonable to suggest that the extent and severity of the mechanical trauma sustained would have been sufficient to result in death.

DISCUSSION

VEHICLES EXPERIENCING FIRES

In this study the states were shown to exhibit great variability in the reporting of fires for passenger cars and light trucks involved in fatal crashes. Only 0.11 percent of 888 vehicles involved in fatal crashes in Utah experienced fires while 5.30 percent of 434 vehicles involved in fatal crashes in Hawaii experienced tires. For all 50 states and the District of Columbia, 2.69 percent of passenger cars and light trucks involved in fatal crashes experienced fires. See Figure 1.

Given the inconsistency with which "fire experience" is reported by the states, the reliability of this data element is brought into question. If this data element is not reliable, it is by definition not valid.

It is possible, of course, that different states might in fact have somewhat different percentages of vehicles experiencing fires due to state differences in climate, roadway environment, rural/urban driving, vehicle mix, or driver characteristics. It seems unlikely, however, that the full extent of the observed differences among the states can be explained by these postulated climatological, environmental, vehicular, and operational factors. It seems unlikely that the climate, roadway environment, rural/urban driving, vehicle mix, or driver characteristics in Utah, for example, are sufficiently different from the rest of the nation to accept as valid the finding that only one vehicle in 888 involved in a fatal crash experienced a fire. The more likely and more parsimonious explanation for the observed differences in reported fires across the states is "differences in reporting procedures."

There is great variation among the states in the collection of vehicle fire data. Six examples from Ray and Lau (1996) will serve to illustrate this variation:

Alabama: "There is no independent variable for fire in the Alabama database. Fire is identified as "first harmful event" coded fire or explosion at the accident level and as "most harmful event" fire or explosion for each vehicle. Obviously, fires that are neither the first nor the most harmful events in accidents will not be identified."

Arkansas: "There is an independent variable "fire occurrence" for each vehicle in the Arkansas database. In 1984-1986 fire occurrence is coded as fire occurrence or fire did not occur. In 1987-1993 the codes were changed to fire, no fire, and unknown. In addition, fire or explosion can be identified as "first harmful event" for the entire accident and as "most harmful event" for each vehicle."

Florida: "Fire information can be found in 2 places in the Florida database. First, fire is coded as 1 of the 36 possibilities in the 2 harmful event fields at the accident level ("first harmful event" and "subsequent harmful event"). Coded values are fire and explosion. Second, fire can be coded as one of the values for "point of impact" at the vehicle level, the other values
being codes for the different regions of the vehicle (i.e., front, left, rear). There is no independent field in the database to capture fire information exclusively."

Maryland: "There is no independent variable for fire in the Maryland database from 1977 to 1992. In 1993, an independent variable "caught fire," coded yes or no, was added for each vehicle."

Michigan: "An independent variable, "fuel leak or fire," is available in calendar years 198 1199 1. Michigan is the only state database that captures information on fuel leaks."

North Carolina: "Only 1 field in the North Carolina database, "post-crash fire," captures the occurrence of vehicle fire. This code is available starting in calendar year 1986. The possible values for this field are yes, no, and not stated. "Post-crash fire" is an independent field, and each vehicle is independently marked as to the occurrence of a post-crash fire."

For those states whose data collection forms do not include a specific data element for the occurrence of a vehicle fire, the FARS analysts must code the occurrence of a tire (EXP_FIRE) based on other information contained in the PAR (e.g., first harmful event, most harmful event, the officer's narrative, damage severity scale, etc.) and other supporting documentation. In this translation from the state's PAR to the FARS form, a certain subjectivity is introduced into the data. Given the variety -of forms and formats from which the FARS coders are working, the variability in state reporting of fire occurrence is understandable.

Although the absence of a specific data element for recording fire occurrence may add to the subjectivity of the coding of vehicle fires, it should be noted that even when two states have a specific data element on their PARs to record the occurrence of vehicle fires, there is no guarantee that those states will report comparable percents of passenger cars and light trucks experiencing fires in fatal crashes. Both Arkansas and North Carolina have a specific data element for reporting fires. Yet, 4.70 percent of 1,915 passenger cars and light trucks involved in fatal crashes in Arkansas experienced fires while only 1.72 percent of 5,278 passenger cars and light truck involved in fatal crashes in North Carolina experienced fires. The percent of vehicles experiencing fires in Arkansas is significantly above the national average; the percent of vehicles experiencing fire in North Carolina is significantly below the national average. See Figure 2.

VEHICLE FIRES AS MOST HARMFUL EVENTS

State reporting of "tire or explosion" as the most harmful event (MHE) for passenger cars and light trucks involved in fatal crashes varies widely. In Illinois, only one (0.56 percent) of 180 vehicles experiencing fires was coded with "fire or explosion" as the MHE. In Virginia, 47 (95.92 percent) of 49 vehicles experiencing tires were coded with "fire or explosion" as the MHE. For all 50 states and the District of Columbia, 30.67 percent of all vehicles experiencing fires were coded with "tire or explosion" as the MHE.

Given the inconsistency with which "fire or explosion" is reported as the MHE by the states, the reliability of this data element is brought into question. If this data element is not reliable, it is by definition not valid.

Although there may be some climatological, environmental, roadway, vehicular, or operator factors that could be advanced to explain some of the variability in state reporting of "fire or explosion" as the MHE for vehicles experiencing fire, the most parsimonious explanation of this variability is again differences in reporting procedures. Some states specifically ask the investigating officer to indicate the MHE for individual, crash-involved vehicles (e.g., North Carolina), others do not (e.g., Texas, New Mexico). Michigan does not code MHE, but it does code "sequence of events" (1 through 4) for each vehicle involved in the crash. "Fire/explosion" is an acceptable code for all four of these data elements. Illinois codes first, second, and third "involvements" for each crash-involved vehicle. "Fire/explosion" is an acceptable code for all three of these data elements. Utah codes each crash (not vehicle) by "accident type" and three "subsequent events." Neither fire nor explosion is an acceptable code for any of these four data elements.

The FARS format for "Most Harmful Event" is presented in Table 8 as it appears in the " 1988 Fatal Accident Reporting System 1988 Coding and Validation Manual." The basic format for this data element has been maintained to the present day with but a few added values (e.g., 45 Transport Bevice Used as Equipment; 47 Vehicle Occupant Struck or Run Over by Own Vehicle, etc.).Note that the acceptable codes under MHE in 1988 (and 1997) are divided into three groups:

- Non-Collision
- Collision with Object Not Fixed
- Collision with Fixed Object
"Fire/Explosion" is listed under 'Non-Collision." Granted that some states (e.g., Illinois, Ohio, Oklahoma) do not often cite fire or explosion as the MHE, the question might be asked: Are some FARS coders assuming that if a vehicle impacts a fixed object or an object that is not fixed and then catches fire, "Fire/Explosion" is an inadmissible code?

The fatal cases summarized in Appendix E clearly indicate that FARS coders in Texas are willing to use the "Fire/Explosion" code for vehicles that have previously impacted fixed objects or objects that are not fixed. But, this raises another question: When a vehicle impacts a fixed object (e.g., a bridge pier or abutment, a concrete traffic barrier, or a tree) or an object that is not fixed (e.g., a railway train, an animal, or another motor vehicle in transport) and then catches fire, how is MHE determined? The coding manual states that most harmful event is "the major event FOR THIS VEHICLE, even if different from the FIRST HARMFUL EVENT." The manual goes on to say, "FATALITIES take precedence over INJURIES." Furthermore, "(I)f this vehicle is involved in more than one event which causes fatality to its occupants or to non-motorists, choose the event which causes the greatest number of fatalities to occupants of this vehicle or to non-motorists (not occupants of other vehicles)." [emphasis added]

Table 8: Format for "Most Harmful Event" in the Fatal Accident Reporting System 1988 Coding and Validation Manual

MOST HARMFUL EVENT

Element Values:
Non-Collision

01 Overturn
02 Fire/Explosion
03 Immersion
04 Gas Inhalation
05 Fell from Vehicle
06 Injured in Vehicle
07 Other Non-Collision
16 Thrown or Falling Object
44 Pavement Surface Irregularity (Potholes, Grooved, Grates)
Collision with Object not Fixed
08 Pedestrian
09 Pedalcycle
10 Railway Train
11 Animal
12 Motor Vehicle in Transport
13 Motor Vehicle in Transport in Other Roadway
14 Parked Motor Vehicle
15 Other Type Non-Motorist
18 Other Object (not fixed)
Collision with Fixed Object

17	Boulder
19	Building
20	Impact Attenuator/Crash Cushion
21	Bridge Pier or Abutment
22	Bridge Parapet End
23	Bridge Rail
24	Guardrail
25	Concrete Traffic Barrier
26	Other Longitudinal Barrier Type
27	Highway/Traffic Sign Post

Table 8 (continued): Format for "Most Harmful Event" in the Fatal Accident Reporting System 1988 Coding and Validation Manual

Collision with Fixed Object (continued)

28	Overhead Sign Support
29	Luminaire/Light. Support
30	Utility Pole
31	Other Post, Other Pole, or Other Supports
32	Culvert
33	Curb
34	Ditch
35	Embankment-Earth
36	Embankment-Rock, Stone, or Concrete
-37	Embankment-Material Type Unknown
38	Fence
39	Wall
40	Fire Hydrant
41	Shrubbery
42	T r e e
43	Other Fixed Object
99	Unknown

The difficulty in applying these instructions is that the "cause or causes of the fatalities" in these crashes may be difficult to determine. When a pickup truck is struck by a train or tractor semitrailer and subsequently "bursts into flames," the driver of the pickup may indeed be burned or charred. To an investigating officer, the burned or charred state of the deceased may be interpreted as the cause of death. Nevertheless, the proximal cause of death may have resulted from mechanical injury, not fire-related or bum-related injury.

Conversely, some vehicles in FARS that should have received an MHE code of "fire or explosion" are receiving other codes. The following example (a 1992 fatal, Texas crash for which the autopsy report was available) illustrates this point:

Example (FARS 481995 in 1992).
From the police officer's report:
Unit 1 (a pickup truck) was west bound on FM 1960. Union Pacific Train was north bound on tracks. Unit 1 ran into the right side of the locomotive. Fire erupted immediately. Right fuel tank of locomotive was ruptured. Crossing lights were activated and unit 1 apparently never hit the brakes.

The police officer's report further indicates that three men were riding in the pickup. None of the men were belted. The driver sustained fatal injuries. The "LF" and "LR" occupants were not injured. For the deceased driver, the injuries were described as "possible chest, severely burned."

It was the opinion of the forensic pathologist who performed the autopsy that the decedent "came to his death as a result of asphyxia due to soot and carbon monoxide inhalation, multiple rib fractures, and charred body.. . ." (Carbon Monoxide: 11% Saturation)

In FARS the most harmful event for the occupants of this vehicle is coded as "rail train."
In his 1994 study entitled "An Analysis of Fires in Passenger Cars, Light Trucks, and Vans," Tessmer attempts to estimate the annual number of motor vehicle fatalities due to fire (his Exhibit 71 on page 53). In making this estimate, "... (t)he underlying assumption . . . is that if the most harmful event field is coded as fire, then at least one death in that vehicle was caused by fire." (p 52) The summaries in Appendix E bring this assumption into question.

Tessmer goes on to say (p 52) "(I)f the most harmful event field is coded as anything other than fire then at least one individual in the crash died of a cause other than fire, but the other fatalities, if there were more than one fatality, could have been due to fire." The last case cited bring this assumption into question.

RECOMMENDATIONS

Given the apparent inconsistency with which "fire occurrence" and "fire or explosion" (as MHE) were coded in FARS in 1987-1989, two additional analyses are recommended. First, the analyses that were performed to produce Figures 1 and 2 should be repeated with 1994-1996 FARS data. If the analyses performed on the newer data set replicate the inconsistencies seen across the states in the 1987-1989 data, then the reliability of these two data elements ['fire occurrence" and "fire or explosion" (as MHE)] is still of concern.

Second, the reporting of "fire occurrence" and "fire or explosion" (as MHE) for the 19871989 and 1994-1996 data sets should be analyzed on a state-by-state basis. If a given state was "under reporting" fires in 1987-1989, is it still "under reporting" fire in 1994-1995? If another state is "over reporting" "fire or explosion" (as MHE) in 1987-1989, is it still "over reporting" "tire or explosion" (as MHE) in 1994-1996? In essence, what is the correlation between a state's reporting of "fire occurrence" and "fire or explosion" (as MHE) in 1987-1989 and 1994-1996? If the correlation is highly positive, there may be some systematic difference(s) among the states that would account for this correlation, including some misunderstanding or misinterpretation on the part of the states regarding the coding of these two data elements.

Further review of individual FARS cases (and their companion PARs and autopsy and toxicological reports) should be undertaken to further explore and better understand the discrepancies in state reporting. The purpose of this review is to determine the point at which inaccuracies or inconsistencies may be entering the FARS data set and to suggest why they are occurring. Is the information contained in the PARs being miscoded by the FARS coders? Or, more likely, is the information in the PARs and death certificates insufficient for accurately determining "fire occurrence" and "fire or explosion" (as MHE)?

It has been noted that there is great variability among the individual states in the recording of fire-related information on their PARs. Some states require investigating officers to record whether or not a vehicle involved in a crash experiences a fire. Others do not. Some states require investigating officers to record the "most harmful event" for the occupants of each vehicle involved in a crash. Other do not.

If the states could be prevailed upon to specifically record "tire occurrence" and "most harmful event" (with "fire or explosion" as a permissible response to MHE), it seems reasonable to expect that the fire-related information contained in FARS might be made more consistent and more reliable, particularly if uniform instructions for coding these data elements were applied by all states.'

[^2]In the absence of comparable reporting on the part of the states, more detailed instructions (i.e., better operational definitions and more examples) should be developed for the FARS coders to promote greater consistency in interpreting the data that are currently available. As a first step in this process, it should be emphasized in these supplemental instructions that vehicles involved in crashes with fixed objects and with non-fixed objects can be coded as a "fire or explosion" under MHE, even though "fire/collision" is within that subset of crashes referred to as "non-collision" crashes.

The supplemental instructions for coding fire-related crashes should encourage the FARS coders to go beyond the injury information contained in the PAR and to pay particular attention to the death certificate-and the autopsy and toxicological reports, if available. Fatal crashes involving vehicular fires are often extremely violent crashes involving massive transformations of energy. Fatally-injured occupants riding in vehicles that experience fires often sustain multiple injuries, any one of which could result in death: broken neck, crushed skull, crushed chest, charred body, etc. Because vehicular tires are relatively rare events, they are, presumably, quite salient events to an investigating officer at the scene of a fatal crash. Furthermore, the "charred body" of a fatally-injured vehicle occupant is a conspicuous physical condition that may draw the attention of an investigating officer while masquerading or rendering less salient other physical conditions, e.g., broken neck, crushed skull, crushed chest. Accordingly, some (and perhaps many) of the fatally-injured vehicle occupants whose injuries are simply described as "burns" or "burned up" in PARs may, in fact, have died from mechanical trauma. If the injury information contained in the PAR is the only source for determining "most harmful event" on the FARS form, the coding of "fire or explosion" as MHE may be overstated. Again, FARS coders should be encouraged to go beyond the PAR to determine cause of death in fatal crashes and to consider carefully the causes of death for vehicle occupants before coding MHE.

When two or more life-threatening injuries are cited for a decedent (e.g., "broken back" and "bums"), which is the proximal cause of death? When the only injuries cited for an occupant fatality in the PAR are bums, but the circumstances of the crash clearly indicate that other injuries might very well have served as the proximal cause of death (e.g., after his vehicle was struck by a train, the driver was ejected and his vehicle overturned on top of him and he was burned), which injury should the FARS coders assume caused the death? When the investigating officer says the decedent suffered "bums," and the death certificate (for an individual who was not autopsied) says the decedent died of "other and unspecified injury to other specified sites, including multiple," should the coders assume that "burns" was the proximal cause of death? The FARS coders should be provided with better rules for sorting out cause of death under conditions or uncertainty and ambiguity. If these rules can be developed, there is the hope that the coding of "fire or explosion" as the most harmful event in a fatal crash can be made more systematic. If MHE can be coded systematically, it at least has the potential to be a valid data element.

Finally, recalling that 11 percent of the fatally-injured occupants in this study who suffered fire-related or burn-related injuries were riding in vehicles that did not experience fires, the FARS coders should be encouraged to carefully review the death certificates when coding "fire occurrence." Fire-related or burn-related injuries cited on the death certificate should alert the coder to the
possibility that the vehicle in which the deceased was riding may have experienced a fire. If the death certificate indicates that the deceased suffered bums, smoke inhalation, etc. the PAR should be double checked to if there is not some reference to a vehicular fire in the officer's narrative, the scene diagram, etc.

REFERENCES

Evans, L. Restraint Effectiveness, Occupant Ejection from Cars, and Fatality Reduction. Accident Analvsis and Prevention, 22, 167-175, 1990.

Evans, L. Rear Seat Restraint System Effectiveness in Preventing Fatalities. Accident Analvsis and Prevention, 20, 129-136, 1988.

Evans, L. Belted and Unbelted Driver Accident Involvement Rates Compared. Journal of Safetv Research, 18, 57-64, 1987.

Evans, L. and M.C. Frick. Helmet Effectiveness in Preventing Motorcycle Driver and Passenger Fatalities. Accident Analvsis and Prevention, 20, 447-458, 1988.

Evans, L. and M.C. Frick. Safety Belt Effectiveness in Preventing Driver Fatalities Versus a Number of Vehicular, Accident, Roadway, and Environmental Factors. Journal of Safety Research, 17, 143-154, 1986.

Fatal Accident Reporting System 1988 Coding and Validation Manual. National Highway Traffic Safety Administration, U.S. Department of Transportation.

FARS Analytic Reference Guide 1975-1996. National Highway Traffic Safety Administration, U.S. Department of Transportation.

Fleiss, J.L. Statistical Methods for Rates and Proportions. New York: John Wiley \& Sons, 1973.
Griffin, L.I. Using Before-and-After Data to Estimate the Effectiveness of Accident Countermeasures Implemented at Several Treatment Sites, College Station: Texas A\&M University System, Texas Transportation Institute, 1989.

International Classification of Diseases (9th Revision) Clinical Modification, Volume I. Ann Arbor, MI: Edwards Brothers, Inc., 1978.

Kahane, C.J. Preliminary Evaiuation of the Effectiveness of Antilock Brake Systems for Passenger Cars. Report No. DOT HS 808 206. National Highway Traffic Safety Administration, U.S. Department of Transportation, December 1994.

Kahane, C. J. Fatality Reduction by Air Bags: Analyses of Accident Data through Early 1996. Report No. DOT HS 808 470. National Highway Traffic Safety Administration, U.S. Department of Transportation, August 1996.

Kahane, C.J. Relationships Between Vehicle Size and Fatality Risk in Model Year 1985-93 Passenger Cars and Light Trucks. Report No. DOT HS 808 570.National Highway Traffic Safety Administration, U.S. Department of Transportation, January 1997.

Ray, RM. and Lau, E. Final Report: Comparative Analysis of Extant Databases Relevant to Motor Vehicle Collision and Noncollision Fire Causation. Menlo Park, California: Failure Analysis Associates, Inc., November 1996.

Tessmer, J. An Analysis of Fires in Passenger Cars, Light Trucks, and Vans. Report No. DOT HS 808 208. National Highway Traffic Safety Administration, U.S. Department of Transportation, December 1994.

Woolf, B. On Estimating the Relationship Between Blood Group and Disease. Annals of Human Genetics, 19, 251-253, 1955.

APPENDIX A

The confidence intervals about the data points in Figure 1 were calculated by means of the following equations, where F represents vehicles experiencing fire and N represents vehicles not experiencing fire.

The \log oddsor logit ($)$) a passenger car or light truck experiencing fire is estimated as:

$$
\begin{equation*}
\mathrm{L}=1 \mathrm{l}\left(\frac{\mathrm{~F}}{\mathrm{~N}}\right) \tag{EqAl}
\end{equation*}
$$

The sampling distribution for L is asymptotically normal with a standard error that can be approximated as:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{se}}=\sqrt{\frac{1}{\mathrm{~F}}+\frac{1}{\mathrm{~N}}} \tag{EqA2}
\end{equation*}
$$

The upper and lower limits of the 95 percent confidence interval about L are:

$$
\begin{align*}
& \mathrm{L}_{\text {upper }}=\mathrm{L}+1.96\left(\mathrm{~L}_{\mathrm{se}}\right) \tag{EqA3}\\
& \mathrm{L}_{\text {lower }}=\mathrm{L}-1.96\left(\mathrm{~L}_{\mathrm{se}}\right) \tag{EqA4}
\end{align*}
$$

The odds (Ω) of a vehicle experiencing a fire $\left(\frac{\mathrm{F}}{\mathrm{N}}\right)$ may be converted to the probabilitv (P) of a vehicle experiencing a fire $\left(\frac{\mathrm{F}}{\mathrm{F}+\mathrm{N}}\right)$ by recognizing that:

$$
\begin{equation*}
\mathrm{P}=\left(\frac{\Omega}{\Omega+1}\right) \tag{EqA5}
\end{equation*}
$$

Or, the probability of a passenger car or light truck experiencing a fire may be estimated as:

$$
\begin{equation*}
P=\left(\frac{e^{L}}{e^{L}+1}\right) \tag{EqA6}
\end{equation*}
$$

By the same logic, the 95 th percentile upper and lower limits of L may be converted to probabilities as:

$$
\begin{align*}
& P_{\text {upper }}=\left(\frac{e^{L_{\text {upper }}}}{e^{L_{\text {upper }}+1}}\right) \tag{EqA7}\\
& P_{\text {lower }}=\left(\frac{e^{L_{\text {lower }}}}{e^{L_{\text {bwere }}}+1}\right) \tag{EqA8}
\end{align*}
$$

Finally, the probabilities (P 's) in Eqs 6, 7, and 8 may be multiplied by 100 to convert them to percents.

Example: Between 1987 and 1989 some 10,224 passenger cars and light trucks in Texas were involvedin fal crashes. 248 (2.43 percent) of these vehicles experienced fire; 9,976

$$
\begin{align*}
& \mathrm{L}=\ln \left(\frac{248}{9,976}\right)=-3.6945 \\
& \mathrm{~L}_{\text {se }}=\sqrt{248+9-9761}=0.0643 \\
& \text { Lupper }^{2}=-3.6945+1.96(0.0643)=-3.5685 \\
& \mathrm{~L}_{\text {lower }}=-3.6945-1.96(0.0643)=-3.8205 \\
& \mathrm{P}=\left(\frac{\mathrm{e}^{-3.6945}}{\mathrm{e}^{-3.6945}+1}\right)=0.0243 \tag{i.e.,2.43percent}\\
& \mathrm{P}_{\text {upper }}=\left(\frac{\mathrm{e}^{-3.5685}}{\mathrm{e}^{-3.5685}+1}\right)=0.0274 \\
& \mathrm{P}_{\text {lower }}=\left(\frac{e^{-3.8205}}{\mathrm{e}^{-3.8205}+1}\right)=0.0214
\end{align*}
$$

On the basis of these data from Texas, it is estimated that 2.43 percent of all passenger cars and light trucks involved in fatal crashes experience fire. Furthermore, there is 95 percent confidence that the "true" fire experience for passenger cars and light trucks involved in fatal crashes in Texas is somewhere between 2.14 and 2.74 percent.

APPENDIX B

In this appendix, F_{i} represents vehicles experiencing fire in the ith state (or in the District of Columbia) and N_{i} represents vehicles in the ith state (or DC) not experiencing fire.
-The \log odds or logit $\left(L_{i}\right)$ of a passenger car or light truck experiencing fire in the ith state is estimated as:

$$
\begin{equation*}
L_{i}=\ln \left(\frac{F_{i}}{N_{i}}\right) \tag{EqB1}
\end{equation*}
$$

The sampling distribution for L_{i} is asymptotically normal with a standard error $L_{i(x)}$ that can be approximated as:

$$
\begin{equation*}
L_{i(s e)}=\sqrt{\frac{1}{F_{i}}+\frac{1}{N_{i}}} \tag{EqB2}
\end{equation*}
$$

To estimate the average (mean) logit for the several ($n=51$) L_{i} 's, the individual L ' β are weighted by the reciprocals of their variances. The weight for the ith state (or DC) is:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{i}}=\frac{1}{\left(\mathrm{~L}_{\mathrm{i}(\mathrm{se})}\right)^{2}} \tag{EqB3}
\end{equation*}
$$

Or,

$$
\begin{equation*}
\mathrm{w}_{\mathrm{i}}=\frac{1}{\left(\frac{1}{\mathrm{~F}_{\mathrm{i}}}+\frac{\mathrm{T}}{\mathrm{~N}_{\mathrm{i}}}\right.} \tag{EqB4}
\end{equation*}
$$

The weighted mean logit (M) is simply:

$$
\begin{equation*}
M=\frac{\sum w_{i} L_{i}}{\sum w_{i}} \tag{EqB5}
\end{equation*}
$$

The sampling distribution for M is asymptotically normal with a standard error M_{se} that can be approximated as:

$$
\begin{equation*}
M_{s e}=\frac{1}{\sqrt{\sum w_{i}}} \tag{EqB6}
\end{equation*}
$$

From Eqs B5 and B6, Z (the standard normal variate) can defined to be:

$$
\begin{equation*}
\mathrm{Z}=\frac{\mathrm{M}}{\mathrm{M}_{\mathrm{se}}} \tag{EqB7}
\end{equation*}
$$

Squaring both sides of Eq B 7 , and recalling that Z^{2} is equivalent to χ^{2} (with one degree of freedom):

$$
\begin{equation*}
\chi^{2}=\frac{M^{2}}{\left(M_{\mathrm{se}}\right)^{2}} \tag{EqB8}
\end{equation*}
$$

Eq B8 reduces to:

$$
\begin{equation*}
\chi^{2}=M^{2} \sum w_{i} \tag{EqB9}
\end{equation*}
$$

This A-square (which might be referred to as "chi-square effect") is basically a test to determine if the overall, weighted mean logit (M) differs significantly from zero.

The total chi-square in this problem is calculated as the sum of the chi-squares for each of the $(\mathrm{n}=51)$ states (and DC). From Eqs Bland B2, for a given state (I) :

$$
\begin{equation*}
Z=\frac{L_{i}}{L_{i(s e)}} \tag{EqB10}
\end{equation*}
$$

Squaring both sides of Eq B 10 yields another χ^{2} (with one degree of freedom):

$$
\begin{equation*}
\chi^{2}=\frac{L_{i}^{2}}{\left(L_{i(s e)}\right)^{2}} \tag{EqBll}
\end{equation*}
$$

Eq B1 1 reduces to:

$$
\begin{equation*}
\chi^{2}=w_{i}\left(L_{i}\right) " \tag{EqB12}
\end{equation*}
$$

And \&i-square total becomes simply the sum of the ($\mathrm{n}=51$) independent estimates generated from application of Eq B 12:

$$
\begin{equation*}
\chi^{2}=\sum w_{i}\left(L_{i}\right) \tag{EqB13}
\end{equation*}
$$

Granted that \&i-square total (Eq B13) and chi-square effect (Eq B9) have been defined, chisquare homogeneity is defined through subtraction:

$$
\begin{equation*}
\chi^{2}=\sum w_{i}\left(L_{i}-M\right)^{2} \tag{EqB14}
\end{equation*}
$$

Chi-square homogeneity (Eq B 14) is the difference between chi-square total and chi-square effect. Chi-square homogeneity is, in essence, a test to determine whether or not the overall variability of the individual estimates (L_{i} 's) is within chance fluctuation about a common mean (M)-or whether the individual estimators are so heterogeneous that it is unlikely that they are all measuring the same phenomenon.

Table B1 summarizes how chi-square total is partitioned into chi-square effect and chi-square homogeneity.

Table B1:Calculation of χ^{2} Effect, χ^{2} Homogeneity, and χ^{2} Total		
Source	Chi-Square $\left(\chi^{2}\right)$	Degrees of Freedom
Effect	$\chi^{2}=M^{2} \sum w_{i}$	1
Homogeneity	$\chi^{2}=\sum w_{i}\left(L_{i}-M\right)^{2}$	$\mathrm{n}-1$
Total	$\chi^{2}=\sum w_{i}\left(L_{i}\right)^{2}$	n

For more details on chi-square homogeneity see Woolf (1955), Fleiss (1973), or Griffin (1989).

APPENDIX C

Six Fatally-Injured Texas Occupants with Fire-Related Injuries Who were Riding in Passenger Cars or Light Trucks that did not Experience Fire
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
STȦTE CASE: 480062 | AUTOPSY: NO
VEHICLE NUMBER: 1 | RACE: WHITE
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):
8120 Other motor vehicle traffic accident involving collision with motor vehicle (driver)
N-CODE 9424 Deep necrosis of underlying tissues due to burn [deep third degree] of trunk withoutmention of loss of body part

STATE:	Texas		ROAD :	Urban-Local Str	
DATE:	January 101987		SPEED LIMIT:	40	
DAY:	Saturday		MANNER OF COLL:	Head-on	
HOUR:	3		FIRST HARM:	Veh in Transp	
WEATHER:	Normal		NO. OF VEHS:	2	
BODY TYPE:	4dr Sedan/HT		INITIAL IMPACT:	Clock 11	
VEH MANUVER:	Going Straight		PRINCIPAL IMPACT:	Unknown	
TRAV SPEED:	Unknown		MOST HARM:	Veh in Transp	
FIRE:	No Fire		ROLLOVER:	No Rollover	
VEHICLE ROLE:	Striking		DEFORMATION:	Disabling/Severe	
AGE AND SEX:	16 Male		EXTRICATION:	Not Extricated	
SEAT POS:	Front Seat-left		EJECTION:	Not Eject, N/A	
TIME OF DEATH	January 101987	HOUR: 3	HOS: :	No	4

1987-1989 FARS/MGOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

8120 Other motor vehicle traffic accident involving collision with motor venicle (driver)

1987-1989 FARS/MCOO DATA: DRI VER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGT TRUCKS

```
STATE CASE: 480426 | AUTOPSY: YES
VEH CLE NUMBER: 1 | RACE: WHTE
PERSON NUMBER: 1 I
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8120 Other not or vehicle trafic accident invol ving collision with mot or vehicle (dri ver)

N-CODE 9489 Burn [any degree] i nvol ving 90 percent or nore of body surface N CODE 9599 Other \& unspecified injury to unspecified site

!

STATE :	Texas		\| ROAD	Rural - Maj Collec
DATE :	March 81987		\| SPEED LIM T:	55
DAY :	Sunday		\| MANER OF COLL:	Head- on
HOUR :	6		\| FIRST HARM	Veh in Transp
VEATHER :	Nor mal		\| ND. OF VEHS:	2
BODY TYPE:	Picku		\| I N TIAL I MPACT:	Cl ock 12
VEH MANUVER:	Going Strai ght		\| PRI NCI PAL I MPACT:	Clock 12
TAAV SPEED	Unknown		\| MDST HARM	Veh in Transp
FI RE:	No Fire		\| ROLLOVER:	No Rollover
VEH CLE ROLE:	Stri ki ng		\| DEFORMATI ONE	Di sabl i ng/ Severe
AGE AND SEX:	24 Mal e		\| EXTRI CATI OR	Not Extricated
SEAT PDS:	Front Seat-left		1 EJ ECTI ON:	Not: Eject, N A
TI ME OF DEATH	March 81987	HOUR: 6	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

STATE CASE:	480502	AUTOPSY:	NO
VEH CLE NUMBER:	1	RACE:	WH TE
PERSON NUMER:	1		

8199 Mbtor vehicletrafic accident of unspecified nature (unspecified person)
$\mathrm{N}-$ CODE 9489 Burn [any degree] i nvol vi ng 90 percent or nore of body surface

STATE :	Texas		\| ROAD	Rural - Pr Art Oth
DATE :	March 211987		\| SPEED LI M T:	55
DAY :	Sat ur day		\| MANNER OF COLL:	Not applicable
HOR:	3		\| FIRST HARM	Cul vert
WEATHER :	Nor nal		\| NO OF VEHS:	1
BODY TYPE:	2dr Sedan/HT / Coupe		\| I N TI AL I MPACT:	Clock 11
VEH MANUVER:	Goi ng Strai ght		\| PRI NCI PAL I MPACT:	Cl ock 11
TRAV SPEED:	Unknown		\| MDST HARM	Cul vert
FI RE:	No Fire		\| ROLLOVER:	No Rol I over
VEH CLE ROLE:	Stri ki ng		\| DEFORMATI ON:	Functional / Mbder ate
AGE AND SEX:	25 Mal e		\| EXTRICATION:	Not Extricated
SEAT POS:	Front Seat-left		\| EJECTION:	Not Eject, N A
TI ME OF DEATH	March 211987	HOUR: 3	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS
STATE CASE:
VEH CLE NUMBER:
PERSON NUMBER:

N CODE 9591 Other \& unspecified injury to trunk

STATE :	Texas	ROAD:	Rural - Local Road
DATE :	Oct ober 131988	\| SPEED LIMIT:	55
DAY :	Thur sday	\| MANER OF COLL:	Angl e
HOR :	8	\| FIRST HARM	Veh in Transp
VEATHER :	Nor mal	\| NO OF VEHS:	2
BODY TYPE:	Truck Based SW	\| INITIAL I MPACT:	Cfeck
VEH MANUVER:	Going Strai ght	\| PRI NCI PAL I MPACT:	Undercarriage
TRAV SPEED:	Unknown	\| MDST HARM	Other Post/Pole
FI RE:	No Fire	\| ROLLOVER:	No Rollover
VEH CLE ROLE:	Both	\| DEFORMATI ON:	Di sabl i ng/ Severe
AGE AND SEX:	58 Mal e	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-l eft	\| EJ ECTI ON:	Tqtally E jected
TIME OF DEATH	Oct ober 131988	\| HOSPI TAL:	Yes

1987-1989 FARS/MCOD DATA: DAIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

480302 | AUTOPSY: NO
 VEHICLE NUMBER
 PERSON NUMBER:
 UNDERLYING CAUSE OF DEATH (E-CODE):
 N-CODE 9410 Burn of face, head, \& neck, unspecified degree

N-CODE 9430 Burn of upper limb, except wrist \& hand, unspecified degree
Not applicable
Tree
1
INITIAL IMPACT: Clock 3
Tree
No Rollover
Disabling/Severe
Not Extricated
Totally Ejected
2 ROAD:
SPEED LIMIT:
MANNER OF COLL
FIRST HARM:
NO. OF VEHS:
PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
DEFORMATI
DEFORMATION:
EXTRICATION:
EJECTION:
HOSPITAL:

Texas
February 171989
Friday
Rain
Picku
Gicku
Unknown
Striking
19 Male
Front Seat-mid
TIME OF DEATH: February 171989

STATE: DATE: DAY: HOUR: WEATHER

BODY TYPE:
AGE AND SEX:
SEAT POS:
HOSPITAL:

APPENDIX D

68 Fatally-Injured Texas Occupants Riding in 46 Vehicles with "Questionable" MHE Codes of "Fire or Explosion." mote: For four of the 68 decedents shown in this appendix, seating position was unknown. That is to say, four of these 68 decedents are not represented in the tallies in Table 4.
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES in PASSENGER CARS AND LIGHT tRUCKS

Veh in Transp
Clock 3
Fire/Explosion
No Rollover
Disabling/Severe
Not Extricated
Not Eject, N/A
$\stackrel{\circ}{2}$
ROAD:
SPEED
SPEED LIMIT:
MANNER OF COLL
FIRST HARM:
NO. OF VEHS:
INITIAL IMPACT:
PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
DEFORMATION:
EXTRICATION:
| EJECTION:
HOUR: 6 | HOSPITAL
$\begin{array}{lll}\text { Texas } \\ \text { January } & 17 & 1987\end{array}$
January 171987
Saturday
6
Normal
2dr Sedan/HT/Coupe
Going Straight
Unknown
Fire in Ven
$\begin{array}{ll}\text { AGE AND SEX: } & 25 \text { Male } \\ \text { SEAT POS: } & \text { Front Seat-left }\end{array}$
TIME OF DEATH: January 171987

STATE: DATE: DAY: HDUR: WEATHER

BODY TYPE:
VEH MANUVER:
TRAV SPEED:
FIRE:
VEHICLE ROLE:
AGE AND SEX
1987-1989 FARS/mCOD DATA: DRIVER and PASSENGER FATALItIES in PASSENGER CARS AND LIGHT TRUCKS

N.CODE 9599 Other \& unspecified injury to unspecified site
N-
Rural-Local Road
55
Angle
veh in
Veh in Transp
2
Clock
Clock 3
Fire/Explosion
No Rollover
Disabling/Severe
Not Extricated
Not Eject, N/A
No
ROAD:
SPEED LIMIT:
MANNER OF COLL:
FIRST HARM:
NO. OF VEHS:
INITIAL IMPACT:
PAINCIPAL IMPACT:
PAINCIPAL IMPACT:
MOST HARM
DEFORMATION:
extrication:
EJECTION:
HOUR: 6 HOSPITAL
Texas
January 171987
Saturday
Normal
$2 d r$ Sedan/HT/Coupe
Going Straight
Unknown ven
Struck
28 Male
Front Seat-right
TIME OF DEATH: January 171987
BODY TYPE:
VEH MANUVER:
TRAV SPEED:
FIRE:
vehicle role:
AGE AND SEX:
SEAT POS
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

:
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGTT TRUCKS

STATE CASE:	482109	\| AUTOPSY:	NO
VEH CLE NUMBER:	1	\| RACE:	WH TE
PERSON NUMBER:	1		

UNDERLYI NG CAUSE OF DEATH (E-CODE):
8160 Mbtor vehicle traffic accident due to loss of control, without collision on the highnay (dri ver)

N-CODE 869 Internal injury to unspecified or ill-defined organs

State :	Texas	\| ROAD :	Urban-I nterstate
DATE :	October 31987	\| SPEED LIMT:	55
DAY:	Sat ur day	\| MANER OF COLL:	Not applicable
HOR:	22	\| FIRST HARM	Guardrail
VEATHER :	Normal	\| NO. OF VEHS:	1
BCOY TYPE:	Picku	\| INTIAL I MPACT:	Clock 11
VEH MANUER:	Going Straight	\| PRI NCI PAL I MPACT:	Top
TRAV SPEED	Unknown	\| MOST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	\| ROLLOVER:	Subsequent Event
VEH CLE RQE:	Stri ki ${ }^{\text {ng }}$	1 DEFORMATI ONE	Functi onal / Mbder ate
AGE AND SEX:	53 Male	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-l eft	\| EJ ECTI OK	Totally Ejected
TIME OF DEATH	October 31987	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

STATE CASE:	482109	AUTOPSY:	NO
VEH CLE NUMBER:	1	RACE:	WH TE
PERSON NUMBER:	2		

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8161 Mot or vehicle trafic accident due to loss of control, without collision on the highuay (passenger)

N-CODE 869 Internal injury to unspecified or ill-defined organs N CODE 9598 Other \& unspecified injury to other specified sites, includipg multiple

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE:	482125	AUTOPSY: NO
VEHICLE NUMBER:	1	RACE: WHITE
PERSON NUMBER:	1	

UNDERLYING CAUSE OF DEATH (E.CODE):
8150 Other motor vehicle traffic accident involving collision on the hignway (driver)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple
8150 Other motor vehicle -
-.................

Rural-Pr Art Oth
Not applicable
Bridge Rail
Clock 12
Clock 12
Fire/Explosio
No Rollover
Disabling/Severe
Extricated
Not Eject, N/A
울
INITIAL IMPACT:
PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
DEFORMATION
EXTRICATION:
EJECTION:
HOUR: 18 | HOSPITAL:
ROAD:
SPEED LIMIT:
MANNER OF COLL
FIRST HARM:
NO. OF VEHS:
......... \vdots
\vdots
\vdots

[^3] $\begin{array}{lll}\text { Texas } \\ \text { October } & 4 & 1987\end{array}$ Sunday
Normal
Picku
Going Straight
Unknown
Fire in Veh
Striking
38 Female
Front Seat-left
October 41987 BODY TYPE:
VEH MANUVER:
TRAV SPEED:
FIRE:
VEHICLE ROLE: AGE AND SEX:
SEAT POS: AGE AND SEX
SEAT POS:
TIME OF DEATH: STATE:
DATE:
DAY:
HOUR:
WEATHE
$\ldots-\ldots$
BODY T
VEH MA
TRAV S
FIRE:
VEHICL

1987-1989 FARS/MCOD OATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CABS AND LIGHT TRUCKS

\section*{| STATE CASE: | 482620 | AUTOPSY: YES |
| :--- | ---: | :--- |
| VEHICLE NUMBER: | 1 | RACE: WHITE |
 PERSON NUMBER:}

underlying cause of death (e-code):
8120
N-CODE 854 Intracranial injury of other \& unspecified nature
MANNER OF COLL:
FIRST HARM:
INITIAL IMPACT: PRINCIPAL IMPACT:

MOST HARM:
ROLLOVER:
................
EJECTION:
HOSPITAL
HOUR. $0 \quad 1$
Picku
Picku
Going Straight
Fire in Veh
Striking
15 Male Front Seat-left

BODY TYPE:
TRAV SPEED:
FIRE:
VEHICLE ROLE:
AGE AND SEX:
SEAT POS:
TIME OF DEATH: December 51987

1987-1989 FARS/MCOD DATA: DRIVEA AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

\section*{| VEHICLE NUMBER: | 2 | \| RACE: WHITE |
| :--- | ---: | ---: |}

underlying cause of death (e-code):
8120 Other motor venicle traffic accident involving collision with motor venicle (driver)
N-CODE 929 Crushing injury of multiple \& unspecified sites
N-CODE 929 Crushing injury of multiple \& unspecified sites

Rural-Maj Collec
on

ROAD:
SPEED
ROAD
SPEED LIMIT:
MANNEA OF COLL
FIAST HARM:

-
INITIAL IMPACT:
| PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
| DEFORMATION:
EXTRICATION:
EJECTION:
HOSPITAL:

HOUR: 0
$\begin{array}{lll}\text { Texas } \\ \text { December } 5 & 1987\end{array}$
Saturday
Fog
Picku
Going Straight
Unknown
Fire in Veh
Striking
Front Seat-left
AGE AND SEX: 18 Male
SEAT POS:
BOOY TYPE:
VEH MANUVER:
TRAV SPEED:
TRAV SPEED:
FIRE:
VEHICLE ROLE:
HOUR:
WEATHER:
STATE:
DATE:
DAY:
0 Picku

TIME OF DEATH: December 51987

1967-1969 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES I N PASSENGER CARS AND LI GTT TRUCKS

STATE CASE:	402604	\| AUTOPSY:	NO
VEH CLE NUMBER:	2	\| RACE:	WH TE
PERSON NUBER:	2		

UNDERLYI NG CAUSE OF DEATH (E-CODE) :

8121 Other not or vehicle traffic acci dent involving collision with motor vehicle (passenger)

N- CODE 654 I nt racrani al injury of ot her \& unspecified nature
\mathbf{N} CODE 669 Internal injury to unspecified or ill-defined organs

STATE :	Texas	ROAD:	Rural - I nterst ate
DATE :	Decenber 261987	SPEED LI M T:	55
DAY :	Sat ur day	MANER OF COLL:	S-Swipe: Same di r
HOR :	17	FIRST HARM	Ven in Transp
WEATHER :	Rain	NO. OF VEHS:	3
BODY TYPE:	2dr Sedan/HT/Coupe	I N TI AL I MPACT:	Clock 8
VEH MANUVER:	Passi ng/ Overtaki ng Anot her Vehicle \|	PRI NCI PAL I MPACT:	Top
TRAV SPEED	Unknown	MOST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	ROLLOVER:	Subsequent Event
VEH CLE ROLE:	Striki ng	DEFORMATI ON	Di sabl i ng/ Severe
AGE AND SEX:	29 Male	EXTRI CATI OR	Not Extricated
SEAT POS:	2nd Seat-right	EJ ECTI OR	Totally Ej ected
TI ME OF DEATH	Decenber 261967 HOUR: 17	HOSPI TAL :	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
N-CODE 829 Fracture of unspecified bones
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple
STATE: Texas
STATE:
DATE: December 201987 Sunday
Normal
2dr Sedan/HT/Coupe
Starting in Traffic Lane
Unknown
Struck
28 Male
Front Seat-lef
TIME OF DEATH: December 291987
underlying cause of death (e-CODE):
8129 Other motor vehicle traffic accident involving collision with motor vehicle (unspecified person)
Rural-Interstate
65
veh in Transp

Clock 6
Fire/Explosion
No Rollover
Disabling/Severe
Not Extricated
Not Eject, N/A
$\stackrel{』}{\infty}$

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GIT TRUCKS

STATE CASE:	480152	\| AUTOPSY:	NO
VEH CLE NUMBER:	1	RACE:	BLACK
PERSON NUMBER:	1	\|	

UNDERLYI NG CAUSE OF DEATH (E CODE)

8129 Other motor vehicle trafic accident invol ving collision with motor vehicle (unspecified pertion)

N CODE 9598 Other \& unspecified injury to other specified sites, including multiple

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

| STATE CASE: | 480178 | AUTOPSY: YES |
| :--- | ---: | :--- | :--- |
| VEHICLE NUMBER: | 1 | RACE: WHITE |

VEHICLE NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):

8169 Motor vehicle traffic accident due to loss of control, without collision on the highway (unspecified person)

N-CODE 854 Intracranial injury of other \& unspecified nature

Urban-Frwy/Xprwy
55
Not applicable Guardrail

Clock 1
Top
Fire/Explosion
Subsequent Event
Disabling/Severe
Not Extricated
Not Eject, N/A
No ROAD: MANNER OF COLL:
FIRST HARM:

No. OF VEHS:
INITIAL IMPACT:
PRINCIPAL IMPACT
MOST HARM:
ROLLOVER:
DEFORMATION:
EXTRICATION:
EJECTION:
HOSPITAL:

HOUR: 2

AGE AND SEX: 19 Female
SEAT POS: Front Seat-left
TIME OF DEATH: February 11988

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GTT TRUCKS

STATE CASE:	480179	\| AUTOPSY:	YES
VEH CLE NMBER:	1	\| RACE:	BLACK
PERSON NUMBER:	1	\|	

UNDERLYI NG CAUSE OF DEATH (E-CODE) :

8120 Other not or vehicle trafic acci dent invol ving collision with motor vehicle (driver)

```
N-CODE 862 Injury to ot her & unspecified intrathoracic organs
```

N-CODE 068 I nj ury to ot her intra-abdominal or gans

STATE:	Texas	\| ROAD:	Rural - Interst ate		
DATE:	February 11988	\| SPEED LIM T:	55		
DAY:	Monday	\| MANER OF CDLL:	Not applicabl e		
HOUR:	2	\| FIRST HARM	Parked Mbtor Veh	\%	
WEATHER:	Nor mal	\| NO. OF VEHS:	1	1	
BODY TYPE:	Picku	\| IN TI AL I MPACT:	Cl ock 12		
VEH MANVER:	Going Strai ght	\| PRI NCI PAL I MPACT:	Cl ock 12		
TRAV SPEED	Unknown	\| MDST HARM	Fire/ Expl osi on		
FI RE:	Fire in Veh	\| ROLLOVER:	No Rol I over		
VEH CLE ROLE:	Striki ng	1 DEFORMATI ON:	Di sabl i ng/ Severe		
AGE AND SEX:	22 Mal e	\| EXTRI CATI ON:	Not Extricated		
SEAT PDS:	Front Seat-left	\\| EJ ECTI ON	Not Eject, N A		
TI ME OF DEATH	February 11988	\| HOSPI TAL:	No		

1967-1969 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 460311 | AUTOPSY: NO
VEH CLE NUMBER: i | RACE: WHTE
PERSON NUMBER: 1 I
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):
6150 Other notor vehicle trafic accident invol ving collision on the hi ghway (driver)
N-CODE 629 Fracture of unspecified bones
N-CODE 669 Internal injury to unspecified or ill-defined organs

STATE :	Texas	ROAD:	Rural - M n Artery
DATE :	February 211966	SPEED LIM T:	55
DAY :	Sunday	\| MANNER OF COLL:	Not appl i cabl e
HOR :	0	\| FIRST HARM	Cul vert
VEATHER :	Nor mal	NO. OF VEHS:	1
BODY TYPE:	Picku	\| I N TI AL I MPACT:	Cl ock 12
VEH MANUVER:	Going Strai ght	\| PRI NCI PAL I MPACT:	Cl ock 12
TRAV SPEED:	Unknown	MDST HARM :	Fire/ Expl osi on
FI RE:	Fire in Veh	ROLLOVER :	No Rol I over
VEH CLE ROLE:	Striki ng	DEFORMATI ON:	Di sabl i ng/ Severe
AGE AND SEX:	38 Male	EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-left	EJ ECTI ONL ,	Unknown
TI ME OF DEATH	February 211966	\| HOSPI TAL:	Yes

1967-1969 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

STATE CASE:	460363	AUTOPSY:	YES	
VEH CLE NUMBER:	1	RACE:	WH TE	
PERSON NUMBER:	1	I		

UNDERLYI NG CAUSE OF DEATH (E-CODE):
6150 Other motor vehicle trafic acci dent invol ving collision on the hi ghway (dri ver)

N CODE 654 I ntracrani al injury of other \& unspecified nature

STATE :	Texas	\| ROAD:	Rural - Interstate
DATE :	March 11966	\| SPEED LIM T:	65
DAY :	Tuesday	\| MANER OF COLL:	Not applicabl e
HOR :	22	\| FIRST HARM	Guar dr ai I
VEATHER :	Nor nal	\| NO. OF VEHS:	1
BODY TYPE:	2dr Sedan/HT/Coupe	\| IN TIAL I MPACT:	Cl ock 12
VEH MANVER:	Going Strai ght	\| PRI NCI PAL I MPACT:	Cl ock 12
TRAV SPEED:	Unknown	\| MDST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	\| ROLLOVER :	No Rol lover
VEH CLE ROLE:	Stri ki ng	\| DEFORMATI ORE	Di sabl i ng/ Severe
AGE AND SEX:	20 Mal e	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-l eft	1 EJ ECTI ON:	Not Eject, NA
TIME DF DEATH	March 11988	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 480396 | AUTOPSY: YES
VEH CLE NUMBER: 1 | RACE: WHTE
PERSON NUMBER: 1 I
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8150 Other not or vehicle traffic accident invol ving collision on the hi ghway (dri ver)

N-CODE 854 I ntracrani al injury of other \& unspecified nature

STATE :	Texas		\| ROAD:	Urban- Local Str
DATE :	March 41988		\| SPEEO LIMT:	35
DaY :	Fri day		\| MANER OF COLL:	Not applicable
HOR:	22		\| FIRST HARM	Tree
VEATIER :	Nornal		I NO. OF VElS:	1
BCOY TYPE:	Picku		\| IN TIAL I MPACT:	Cl ock 3
VEH MANUER:	Going Strai ght		\| PRI NCI PAL I MPACT:	Clock 3
TRAV SPEED	Unknown		MDST HARM	Fire/ Expl osi on
FIRE:	Fire in Veh		ROLLOER:	No Rollover
VEH CLE ROLE:	Stri ki ng		DEFORMATI ONE	Functi onal / Mbderate
AGE AND SEX:	18 Male		\| EXTRI CATI ONL	Not Extricated
SEAT POS:	Front Seat-left		(EJ ECTI OK	Not Eject, N/A
TIME OF DEATH	March 51988	HOUR: 23	\| HOSPI TAL:	Yes

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS


```
PERSON NUMBER: 2 I
UNDERLYI NG CAUSE OF DEATH (E-CODE)
    8161 Mbtor vehicle traffic accident due to loss of control, without collision on the hi ghway (passenger)
N-CODE 854 Intracranial injury of other & unspecified nature
```

STATE :	Texas	\| ROAD:	Urban- Local Str
DATE :	March 41988	\| SPEED LIMIT:	35
DAY :	Fri day	\| MANER OF COLL:	Not appligable
HOR :	22	\| FIRST HARM	Tree
VEATHER :	Nor nal	\| NO. OF VEHS:	1
BCDY TYPE:	Picku	\| INTIAL IMPACT:	Clock 3
VEH MANVER:	Going Strai ght	\| PRINCIPAL IMPA	: Clock 3
TRAV SPEED	Unknown	\| MDST HARM	Fire/Explosion
FIRE:	Fire in Veh	\| ROLLOVER:	No Rol lover
VEH CLE ROLE:	Striking	\| DEFORMATION:	Functi onal / Mbder at e
AGE AND SEX:	15 Male	\| EXTRICATION:	Not Extricated
SEAT POS:	Front Seat-unk	1 EJ ECTI ON:	Not Eject, NA
TI ME OF DEATH	March 41988	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
STATE CASE: 480396 | AUTOPSY: YES
VEHICLE NU
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):
8161 Motor vehicle traffic accident due to loss of control, without collision on the highway (passenger)
N-CODE 9490 Burn of unspecified site, unspecified degree
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE: 480534 | AUTOPSY: YES

VEHICLE NUMBER
PERSON NUMBER:
underlying cause of death (e-CODE):
8120 Other motor venicle traffic accident involving collision with motor vehicle (driver)
$N \cdot C O D E 854$ Intracranial injury of other \& unspecified nature Rural-Pr Art Oth | ROAD:
| SPEED LIMIT:
| MANNER OF COLL:
| FIRST HARM:
| NO. OF VEHS:
..$~$

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 480566 | AUTOPSY: YES
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 1 I
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):
8150 Other not or vehicle traffic accident involving collision on the hi ghway (dri ver)

N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

STATE :	Texas	\| ROAD:	Ur ban- Fruy/ Xpruy
DATE :	March 271989	\| SPEED LIMT:	35
DAY:	Monday	\| MANNER OF COLL:	Not applicable
HOR:	22	\| FIRST HARM	Other Post/ Pol e
VEATHER :	Nor nal	\| NO. OF VEHS:	1
BODY TYPE:	2dr Sedan/HT/Coupe	\| I N TI AL I MPACT:	Clock 9
VEH MANVER:	Goi ng Strai ght	\| PRI NCI PAL I MPACT:	Clock 9
TRAV SPEED	Unknown	\| MDST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	\| ROLLOVER:	No Rol I over
VEH CLE ROLE:	Striki ng	\| DEFORMATI ON	Di sabl i ng/ Severe
AGE AND SEX:	23 Male	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-left	\| EJ ECTI ON:	Not Eject, N A
TI ME OF DEATH	March 271989	\| HOSPI TAL:	No

1987-1969 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

STATE CASE:	480566	AUTOPSY:	NO
VEH CLE NMBER:	1	RACE:	WH TE
PERSON NUMBER:	2		

UNDERLY NG CAUSE OF DEATH (E-CODE)

8151 Other notor vehicle traffic accident invol ving collision on the hi ghway (passenger)

N-CODE 9598 Other 8 unspecified injury to other specified sites, including multiple

STATE :	Texas		\| ROAD:	Urban- Fr wy/ Xpruy	
DATE :	March 271969		\| SPEED LIM T:	35	
DAY :	Monday		\| MANNER OF COLL:	Not appl i cabl e	
HOR:	22		\| FIRST HARM	Ot her Post/ Pol e	
VEATHER :	Nor mal		\| NO. OF VEHS:	1	
BODY TYPE:	2dr Sedan/HT/Coupe		\| I N TI AL I MPACT:	Cl ock 9	
VEH MANUVER:	Goi ng Strai ght		\| PRI NCI PAL I MPACT:	Cl ock 9	
TRAV SPEED:	Unknown		\| MDST HARM	Fire/ Expl osi on	
FI RE:	Fire in Veh		\| ROLLOVER:	No Rol lover	
VEH CLE ROLE:	Striking		\\| DEFORMATI ON	Di sabl i ng/ Severe	
AGE AND SEX:	24 Mal e		\| EXTRI CATI ON:	Not Extricated	
SEAT POS:	Front Seat-right		\| EJ ECTI ON:	Not Eject, N A	
TI ME OF DEATH	March 271969	HOUR: 23	\| HOSPI TAL:	No	

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

8159 Other motor vehicle
8159 Other motor vehicle traffic accident involving collision on the highway (unspecified person)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

STATE:	Texas	ROAD:
DATE:	April 81989	\mid SPEED LIMI
DAY:	Saturday	\| MANNER OF
HOUR:	17	\| FIRST HARM
WEATHER:	Normal	\| NO. OF VEH
BODY TYPE:	Picku	INITIAL IM
VEH MANUVER:	Going Straight	PRINCIPAL
TRAV SPEED:	Unknown	MOST HARM:
FIRE:	Fire in Veh	\| ROLLOVER:
VEHICLE ROLE:	Striking	DEFORMATIO

HOUR: 17 | HOSPITAL:
1987-1989 FARS/MCOO DATA: DRIVER AND PASSENGER FATALITIES in PASSENGER CARS AND LIGHT TRUCKS

55
Hea
Head-on
Veh in Transp
lock 1
Clock 1 !
Fire/Explosion
Disabling/Severe
Not Extricated
Not Eject, N / A
울
1987.1989 FARS / MCOO DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AN0 LIGHT TRUCKS

STATE CASE:	$480680 \mid$ AUTOPSY: NO	
VEHICLE NUMBER:	1	\| RACE:
PERSON NUMBER:	2 I	

UNDERLYING CAUSE OF DEATH (E-CODE):
8129 Other motor vehicle traffic accident involving collision with motor vehicle (unspecified person)

N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

STATE:	Texas	\| ROAD:	Rural-Pr Art 0th
DATE:	April 91988	\| SPEED LIMIT:	55
DAY:	Saturday	\| MANNER OF COLL:	Head-on
HOUR:	17	\| FIRST HARM:	Veh in Transp
WEATHER:	Normal	\| NO. OF VEHS:	2
BODY TYPE:	Picku	\| INITIAL IMPACT:	Clock 1
VEH MANUVER:	Going Straight	\| PRINCIPAL IMPA	Clock 1
TRAV SPEED:	Unknown	\| MOST HARM:	Fire/Explosion
FIRE:	Fire in Veh	\| ROLLOVER:	No Rollover
VEHICLE ROLE:	Striking	\| DEFORMATION:	Disabling/Severe
AGE AND SEX:	16 Female	\| EXTRICATION:	Not Extricated
SEAT POS:	Front Seat-mid	\| EJECTION:	Not Eject, N/A
TIME OF DEA	H: April 91988	\| HOSPITAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE:	Texas		\| ROAD:	Rural.Pr Art Oth
DATE:	April 91988		\| Speed limit:	55
DAY:	Saturday		\| MANNER OF COLL:	Head-on
HOUR:	17		\| FIRST HARM:	veh in Transp
WEATHER:	Normal		\| NO. OF VEHS:	2
BODY TYPE:	Picku		\| INITIAL IMPACT:	Clock 1
VEH MANUVER:	Going Straight		\| PRINCIPAL IMPACT:	Clock 1
TRAV SPEED:	Unknown		\| MOST HARM:	Fire/Explosion
FIRE:	Fire in Veh		\| ROLLOVER:	No Rollover
VEHICLE ROLE:	Striking		\| DEFORMATION:	Disabling/Severe
AGE AND SEX:	15 Female		\| EXTRICATION:	Not Extricated
SEAT POS:	Front Seat-mid		\| EJECTION:	Not Eject, N/A
time of death:	April 91988	HOUR: 17	\| HOSPITAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 480680 | AUTOPSY: NO
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 4 I
UNDERLYI NG CAUSE OF DEATH ( E-CODE):
    8121 Other notor vehicle traffic acci dent i nvol vi ng collision with not or vehicle (passenger)
N-CODE 9598 Other & unspecified i njury to other specified sites, incl udi ng multiple
```

State :	Texas		\| ROAD:	Rural - Pr Art Oth
DATE :	April 91988		\| SPEED LIMIT:	55
day :	Sat ur day		\| MANER, OF COL:	Head- on
HOR:	17		\| FIRST HARM	Veh in Transp
VEATHER :	Nor mal		I NO OF VEHS:	2
BODY TYPE:	Picku	Ie	\| INTIAL I MPACT:	Clock 1
VEH MANMER:	Going Straight		\| PRINCI PAL I MPACT:	Clock 1
TRAV SPEED.	Unknown	\therefore	\| MOST HARM	Fire / Expl osion
FIRE :	Fire in Veh		\| ROLLOVER:	No Rol Iover
VEH CLE ROLE:	Stri ki ng		1 DEFORMATI OK	Disabling/Severe
AGE AND SEX:	20 Male		1 EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-ri ght		1 EJ ECTI ON:	Not Ej ect, N A
TIME OF DEATH	April 91988	HOUR: 17	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

N-CODE
Rural-Pr Art Oth
55
Head-on
Veh in Transp
2 Clack 11
Cligek 11
Fire/Explosion
No Rollover
Disabling/Severe Not Extricated
Not Eject, N/A
2
ROAD:
SPEED LIMIT:
MANNER OF COLL:
FIRST HARM:
NO. OF VEHS: INITIAL IMPACT:
PRINCIPAL IMPACT MOST HARM:
ROLLOVER:
DEFORMATION:
EXTRICATION:
EJECTION:
| HOSPITAL: Texas
Texas
April 91988
Saturday
Normal
Truck Based Utility
Going Straight
Unknown
Fire in
Striking
25 Male
Front Seat-left
TIME OF DEATH: April 91988
STATE:
DATE:
DAY:
VEH MANUVER:
TRAV SPEED:
FIRE:
vehicle role:
AGE AND SEX:
SEAT POS
HOUR: 17

[^4]
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
STATE CASE: 480844 | AUTOPSY: YES
STATE CASE:
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E.CODE):
8150 Other motor vehicle traffic accident involving collision on the highway (driver)
N-CODE 854 Intracranial injury of other \& unspecified nature

Rural-Interstate
Not
Not applicable
Bridge Rail
Bridge Rail
1
Unknown
Top
Top
Fire/Explosion
Subsequent Event
Disabling/Severe
Not Extricated
Not Eject, N/A
No ROAD:
SPEED LIMIT: manner of coll:

FIAST HARM:
NO. OF VEHS:
INITIAL IMPACT:
PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
deformation:
EXTRICATION:
EJECTION:
HOSPITAL:

-
$\vdots \vdots$

HOUR: 4

Texas
April 23! 1988
Saturday
2
Texas
April 23! 1988
Saturday
2
Normal
Picku
Going Straight
Unknown
Striking
22 Male
22 Male
Front Seat-left
TIME OF DEATH: April 231988

1987-1989 FARS/MCOD DATA• DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE: 480855 AUTOPSY: YES

VEHICLE NUMBER:
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE)
$\begin{array}{lll} & 8120 & \text { Other motor vehicle traffic accident involving collision with motor vehicle (driver) } \\ \text { N-CODE } 805 & \text { Fracture of vertebral column without mention of spinal cord injury } \\ \text { N-CODE } 862 & \text { Injury to other \& unspecified intrathoracic organs } \\ \text { N-CODE } 868 & \text { Injury to other intra-abdominal organs }\end{array}$
N-CODE 868 Injury to other intra-abdominal organs

1987-1989 FARS/MCOO DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 480879 | AUTOPSY: NO
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 2
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8151 Other not or vehicletrafic acci dent invol ving collision on the hi ghway (passenger)

N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS ANO LIGHT TRUCKS

[^5]8151 Other motor vehicle traffic accident involving collision on the highway (passenger)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

STATE CASE: 481267 | AUTOPSY: NO
VEHICLE NUMBER:
PERSON NUMBER: $\quad 2$
UNDERLYING CAUSE OF DEATH (E-CODE):
8129 Other motor vehicle traffic accident involving collision with motor vehicle (unspecified person)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple
8

Vead-on in Transp
Clock 11.
Clock 11
Fire/Explosio
No Rollover
Functional/Moderate
Not Extricated
Not Eject, N/A
열

FIRST HARM:
NO. OF VEHS:
INITIAL IMPACT:
PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
DEFORMATION:
extrication:
EJECTION:
HOUR: 13 | HOSPITAL:

Texas
June 20
Monday
Normal
Truck Based SW Going Straight

Fire in veh
Striking
84 Female
Front Seat-right

STATE:
DATE:
BODY TYPE:
VEH MANUVER:
AGE AND SEX:
SEAT POS:
time of death:
1987-1989 FARS/MCOD DATA: ORIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE:	481380	\| AUTOPSY: NO
VEHICLE NUMBER:	1	\| RACE: WHITE

PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):
8151 Other motor vehicle traffic accident involving collision on the highway (passenger)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

| | | |
| :--- | ---: | :--- | :--- |
| CASE: | 481582 | \| AUTOPSY: NO |
| NUMBER: | 1 | \| RACE: WHITE |

8100 Motor vehicle traffic accident involving collision with train (ariver)
N-CODE 9598 Other \& unspecified injury to other specified sites, incluging multiple

VEHICLE N
UNDERLY

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 481773 | AUTOPSY: YES
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 1 I
```

UNDERLYI NG CAUSE OF DEATH (E-CODE)
8129 Other notor vehicletrafic accident invol ving collision with not or vehicle (unspecified person)
N CODE 9598 Other \& unspecified injury to other specified sites, incl udi ng multiple

STATE :	Texas	\| ROAD:	Rural - Mn Artery
DATE :	August 31988	\| SPEED LIM T:	55
DAY :	Wednesday	\| MANNER OF COLL:	Head - on
HOR :	17	\| FIRST HARM	Veh in Transp
WEATHER :	Normal	\| NO. OF VEHS:	2
BODY TYPE:	Picku	\| I N TI AL I MPACT:	Cl ock 12
VEH MANVER:	Negotiating a Curve	\| PRI NCI PAL I MPACT:	Cl ock 12
TRAV SPEED:	Unknown	\| MDST HARM	Fire/Explosion
FI RE:	Fire in Veh	\| ROLLOVER:	No Rollover
VEH CLE ROLE:	Striki ng	\| DEFORMATI ON:	Disabling/Severe
AGE AND SEX:	24 Male	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-l eft	1 EJ ECTI OR	Not Eject, NA
TI ME OF DEATH	August 31988	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALITIES IN PASSENGER CARS AND LI GIT TRUCKS

STATE CASE:	481773	AUTOPSY:	YES
VEH CLE NUMBER:	1	RACE:	WH TE
PERSON NUMBER:	2		

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8129 Other not or vehicle traffic accident invol ving collision with mot or vehicle (unspecified person)
!

N-CODE 9598 Other \& unspecifiedinjury to other specified sites, including multiple

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

1987-1989 FARS/MCOO DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
STATE CASE: 482412 | AUTOPSY: YES
VEHICLE NUMBER
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):

8121

N-CODE 803 Other \& unqualified skull fractures
N-CODE 853
Other \& unspecified intracranial hemorrhage following injury ROAD:
SPEED SPEED LIMIT:
MANNER OF COLL: MANNER OF COLL:
FIRST HARM: NO. OF VEHS: INITIAL IMPACT: PRINCIPAL IMPACT:
MOST HARM:
ROLLOVER:
DEFORMATION:
EXTRICATION:
EJECTION:
HOUR: 22 | HOSPITAL:

| Texas | | |
| :--- | :--- | :--- | :--- |
| October | 14 | 1988 |

October 141988 Friday
Normal
2ar Sedan/HT/Coupe
Going Straight
Fire in veh
Striking
18 Male
Front Seat-right
 STATE:
DATE:
DAY:
HOUR:
WEATHER:
BODY TYPE:
VEH MANUVER:
FIRE.
VEHICLE ROLE:
AGE AND SEX:
SEAT POS:
Not Eject, N/A
No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGTT TRUCKS

STATE CASE:	482696	AUTOPSY:	YES
VEH CLE NUMBER:	1	RACE:	WH TE
PERSON NUMBER:	1		

UNDERLYI NG CAUSE OF DEATH (E-CODE) :
8150 Ot her mot or vehicle traffic acci dent involving collision on the hi ghway (driver)

N-CODE 854 Intracranial injury of other \& unspecified nature N CODE 9599 Other \& unspecified injury to utispecified site

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE: 482801 | AUTOPSY: YES
 VEHICLE NUMBER:
 UNDERLYING CAUSE OF DEATH (E-CODE):

8121 Other motor vehicle

8121 Other motor vehicle traffic accident involving collision with motor vehicle (passenger)
N-CODE 854 Intracranial injury of other \& unspecified nature
N.COD
(20)

ROAD:	Rural-Min Artery
SPEED LIMIT:	55
MANNER OF COLL:	Head-on
FIRST HARM:	Veh in Transp
NO. OF VEHS:	2
INITIAL IMPACT:	Clock 11
PRINCIPAL IMPACT:	Clock 11
MOST HARM:	Fire/Explosion
ROLLOVER:	No Rollover
DEFORMATION:	Disabling/Severe
EXTRICATION:	Not Extricated
EJECTION:	Totally Ejected

Yes
hOSPITAL:
HOUR: 15
Texas
December 101988
Saturday
19
Rain
..........................
4dr Sedan/HT
Going Straight
Unknown
Fire in Veh
Striking
18 Male
Unknown
BODY TYPE:
STATE:
DATE:
DAY:
HOUR:
WEATHER
AGE AND SEX:
SEAT POS:

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TIES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 482801 | AUTOPSY: NO
VEH CLE NUMBER: 2 | RACE: WH TE
PERSON NUMBER: 2 |
UNDERLYI NG CAUSE OF DEATH (E-CODE):
    8121 Other motor vehicle traffic accident involving collision with notor vehicle (passenger)
N-CODE 9598 Other & unspecified injury to other specified sites, including multiple
```

STATE :	Texas	\| ROAD:	Rural - M n Artery
DATE :	Decenber 101988	\| SPEED LI M T:	55
DAY :	Sat ur day	\| MANER OF COLL:	Head- on
HOR :	19	\| FI RST HARM	Veh in Transp
WEATHER :	Rai n	\| NO OF VEHS:	2
BCDY TYPE:	4dr Sedan/HT	\| I N TI AL I MPACT:	C ock 11
VEH MANUVER:	Going Strai ght	\| PRI NCI PAL I MPACT:	Cl ock 11
TRAV SPEED:	Unknown	\| MDST HARM	Fi re/ Expl osi on
FI RE:	Fire in Veh	\| ROLLOVER :	No Rol I over
VEH CLE ROLE:	Striking	\| DEFORMATI ON:	Di sabl i ng/ Severe
AGE AND SEX:	23 Male	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Unknown	\| EJ ECTI ON:	Totally Ejected
TI ME OF DEATH	Decenber 101988	\| HOSPI TAL:	No

1987. 1989 FARS/MCOO DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GTT TRUCKS
```
STATE CASE: 482801 | AUTOPSY: NO
VEH CLE NUMBER: 2 | RACE: WHTE
PERSON NUMBER: }3\mathrm{ I
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8121 Other not or vehicle trafic accident invol ving collision with motor vehicle (passenger)

N-CODE 9598 Other \& unspecified injury to other specified sites, incl uding multiple

STATE :	Texas	\| ROAD:	Rural - Mn Artery	
DATE :	Decenber 101988	\| SPEED LIM T:	55	
DAY :	Sat ur day	\| MANNER OF COLL:	Head- on	19
HOUR:	19	\| FIRST HARM	Veh in Transp	
VEATHER :	Rai n	\| NO. OF VEHS:	2	1
BODY TYPE:	4dr Sedan/HT	\| INTIAL I MPACT:	Cl ock : 11	
VEH MANVER:	Goi ng Strai ght	\| PRI NCI PAL I MPACT:	Clock 11	
TRAV SPEED	Unknown	\| MDST HARM	Fi re/ Expl osi on	
FI RE:	Fire in Veh	\| ROLLOVER:	No Rollover	
VEH CLE ROLE:	Striking	1 DEFORMATI ON:	Disabling/Severe	
AGE AND SEX:	15 Male	\| EXTRI CATI ON:	Not Extricated	
SEAT POS:	2nd Seat-unk	\| EJ ECTI ON:	Not Eject, N A	
TIME OF DEATH	Decenber 101988	\| HOSPI TAL:	No	

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GTT TRUCKS

```
STATE CASE: 482801 | AUTOPSY: NO
VEH CLE NUMBER: 2 | RACE: WH TE
PERSON NUMBER: 4 I
UNDERLYI NG CAUSE OF DEATH (E-CODE):
```

8121 Other not or vehicle traffic accident involving collision with motor vehicle (passenger)

N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

STATE :	Texas	ROAD:	Rural - M n Artery
DATE :	Decenber 101988	SPEED LIMIT:	55
DAY :	Sat ur day	MANNER OF COLL:	Head- on
HOUR :	19	FIRST HARM	Veh in Transp
WEATHER :	Rai n	NO. OF VEHS:	2
BCDY TYPE:	4dr Sedan/HT	I N TIAL I MPACT:	Cl ock 11
VEH MANVER :	Going Strai ght	PRI NCI PAL I MPACT:	Cl ock 11
TRAV SPEED:	Unknown	MDST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	ROLLOVER :	No Rol l over
VEH CLE ROLE:	Stri ki ng	DEFORMATI ON:	Di sabl ing/ Severe
AGE AND SEX:	21 Mal e	EXTRI CATI ON:	Not Extricated
SEAT POS:	2nd Seat-unk	EJ ECTI OR	Not Ej ect, N A
TIME OF DEATH	Decenber 101988	HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
STATE CASE: 482890 | AUTOPSY: YES
vehicle number

VEHICLE NUMBER:	1	RACE: WHITE
PERSON NUMBER:	1	

undealying cause of death (e-code):
8120 Other motor vehicle traffic accident involving collision with motor vehicle (driver)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple
ROAD: SPEED LIMIT:
IRST HARM:
Head-on
Mead-on
ven in Transp
2
Clock 12
Clock 12
Fire/Explosion
No Rollover
Disabling/Severe
Not Extricated
Totally Ejected
No

Rural-Local Road
55
INITIAL IMPACT:
PRINCIPAL IMPACT:
Texas
December 221988
Thursday
Normal
Picku
Picku
Going Straight
Unknown
Fire in Veh
Striking
EXTRICATION:
EJECTION:
HOSPITAL:

8120 Other motor vehicle

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

STATE CASE:	480281	\| AUTOPSY:	YES
VEH CLE NUMBER:	3	\| RACE:	BLACK
PERSON NUMBER:	1	\|	

UNDERLYI NG CAUSE OF DEATH (E-CODE) :
8120 Other not or vehicle trafic acci dent involving collision with not or vehicle (driver)
\mathfrak{N} CODE 854 I ntracrani al injury of ot her 8 unspeci fied nat ure
N CODE 9590 Other 8 unspecified injury to face \& neck
N-CODE 9591 Other \& unspecified injury to trunk

STATE :	Texas	\| ROAD:	Rural - Interstate	
DATE :	February 151989	\| SPEED LIM T:	65	
DAY :	Wednesday	\| MANER OF COLL:	Rear - end	
HOR :	10	\| FIRST HARM	Veh in Transp	
VEATHER :	Rai n	\| NO. OF VEHS:	3	
BODY TYPE:	Picku	\| INITIAL I MPACT:	Clock 6	
VEH MANUVER:	Stopped in Traffic Lane	\| PRI NCI PAL I MPACT:	Clock 12	
TRAV SPEED:	Stopped Vehicle	\| MDST HARM	Fire/Explosion	
FI RE:	Fire in Veh	\| ROLLOVER:	No Rol l over	
VEH CLE ROLE:	Both	\| DEFORMATI ORE	Disabling/Severe	
AGE AND SEX:	75 Mal e	\| EXTRI CATI ON:	Not Extricated	
SEAT POS:	Front Seat-left	\\| EJ ECTI ON:	Not Eject, N A	
TI ME OF DEATH	February 151989	\| HOSPI TAL:	Yes	

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TIES IN PASSENGER CARS AND LI GHT TRUCKS

| STATE CASE: | 461613 | AUTOPSY: | NO |
| :--- | ---: | :--- | :--- | :--- |
| VEH CLE NUMBER: | 1 | RACE: | BLACK |
| PERSON NUMBER: | 1 | I | |

```
UNDERLYI NG CAUSE OF DEATH (E-CODE):
6150 Other notor vehicle traffic accident involving collision on the highway (driver)
```

N CODE 9596 Other \& unspecified injury to other specified sites, including multiple

STATE :	Texas		\| ROAD	Rural - Maj Collec
DATE :	August 41969		\| SPEED LIM T:	55 !
DAY :	Friday		\| MANER OF COLL:	Not applicable
HOR :	5		\| FIRST HARM	Cul vert
VEATHER :	Nor mal		\| NO. OF VEHS:	1
BODY TYPE:	4dr Sedan/HT		\| INITIAL I MPACT:	Cl ock 9
VEH MANUVEA:	Goi ng Straight		\| PRI NCI PAL I MPACT:	Cl ock 9
TRAV SPEED	Unknown		\| MDST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh		\| ROLLOVER :	Subsequent Event
VEH CLE ROLE:	Stri ki ng		\| DEFORMATI ONE	Functi onal / Mbder at e
AGE AND SEX:	57 Mal e		\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-l eft		EJ ECTI ON:	Not Eject, N A
TI ME OF DEATH	August 41989	HOUR: 5	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRIVER ANO PASSENGER FATALItIES in PASSENGER CARS AND Light trucks

8120 Other motor vehicle traffic accident involving collision with motor venicle (driver)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

State:	Texas	ROAD:
DATE:	August 61989	SPEED LIMIT:
DAY:	Sunday	\| MANNER OF COLL:
HOUR:	1	First harm:
WEATHER:	Normal	I No. OF VEHS:
BODY TYPE:	2dr Sedan/HT/Coupe	\| INITIAL IMPACT:
VEH MANUVER:	Stopped in Traffic Lane	\| PRINCIPAL ImPACT
TAAV SPEED:	Stopped venicle	\| most harm:
FIRE:	Fire in Veh	\| Rollover:
VEHICLE ROLE:	Both	\| deformation:

AGE AND SEX: 34 Male | EXTRICATION:
EJECTION:
HOSPITAL:
HOUR: 2
Clock 6
Fire/Explosion
Subsequent Event
Functional/Moderate
Not Extricated
Not Eject, N/A
은

BODY TYPE:
VEH MANUVER:
LE ROL
AGE AND SEX:
SEAT POS:
TIME OF DEATH: August 61989
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

$$
\begin{array}{lrll}
\text { STATE CASE: } & 481638 & \text { | AUTOPSY: NO } \\
\text { VEHICLE NUMBER: } & 4 & \text { | RACE: } \\
\text { PERSON NUMBER: } & 3 & &
\end{array}
$$

underlying cause of death (e-CODE):
8121 Other motor vehicle traffic accident involving collision with motor vehicle (passenger)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

812 Otner motor vent

1987-1989 FARS/MCOD DATA: DRIVER ANO PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
8121 Other motor vehicle traffic accident involving collision with motor vehicle (passenger)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple
ROAD: SPEED LIMIT:
MANNER OF COLL:

FIRST HARM:
no. of vehs:
INITIAL IMPACT:
PRINCIPAL IM
MOST HARM:
DEFORMATION:
extrication:
ejection:
hospital:

hour: 3 | hospital.
481638 | AUTOPSY: NO
VEHICLE NUMBER:
......-............
underlying cause of death (e-CODE):
Texas
August 61989
Sunday
Normal

2 Female
2nd Seat-right

$\begin{array}{ll}\text { AGE AND SEX: } & 2 \text { Female } \\ \text { SEAT POS: } & \text { 2nd Seat }\end{array}$
AGE AND SEX: 2 Female
SEAT POS: \quad 2nd Seat
time of death: August 61989

STATE: OATE: DAY: HOUR: WEATHER

1987-1989 FARS /MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GIT TRUCKS

```
STATE CASE: 481672 | AUTOPSY: NOT STATED
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 1 I
```

UNOERLYI NG CAUSE OF DEATH (E-CODE) :
8120 Other motor veh.c.e traffic acci dent involving collision with motor vehicle (driver)
N - CODE 9591 Other \& unspecified injury to trunk

State :	Texas	\| ROAD:	Rural - Pr Art Dth
DATE :	August 91989	\| SPEED LIMIT:	45
DaY :	Vednesday	\| MANER OF COLL:	Head- on
HOR:	13	\| FI RST HARM	Veh in Transp
VEATIER :	Nor mal	\| NO. OF VEHS:	\$
BCOY TYPE:	Auto Picku	\| INTIAL IMPAC	T: 'Clock 11
VEH MANUER:	Going Strai ght	\| PRINCIPAL IMPA	CT: Clock 11
TRAV SPEED	Unknown	\| MOST HARM	Fire/Explosion
FI RE:	Fire in Veh	\| ROLLOVER:	No Rol Iover
VEH CLE ROLE:	Stri ki ${ }^{\text {ng }}$	\| DEFORMATI ONE	Disabling/Severe
AGE AND SEX:	33 Male	\| EXTRICATION:	Not Extricated
SEAT POS:	Front Seat-l eft	\| EJECTION:	Not Eject, N/A
TIME OF DEATH	August 91989	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE:	481695	\| AUTOPSY:	NO
VEH CLE NUMBER:	1	\| RACE:	WH TE
PERSON NUMBER:	5	I	

UNDERLYI NG CAUSE OF DEATH (E-CODE) :
8151 Other notor vehicle traficicaccident involving collision on the hi ghway (passenger

N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple

STATE :	Texas	\| ROAD:	Rural - Maj Collec
DATE :	August 121989	\| SPEED LIM T:	55
DAY :	Sat ur day	\| MANNER OF COLL:	Not applicable
HOR :	1	\| FIRST HARM	Tree
VEATHER :	Nornal	\| NO OF VEHS:	1
BODY TYPE:	Convertible	\| INTIAL IMPACT:	Cl ock 12
VEH MANUVER:	Negotiating a Curve	\| PRI NCI PAL I MPACT:	Unknown
TRAV SPEED:	83mph	\| MOST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	\| ROLLOVER:	Subsequent Event
VEH CLE ROLE:	Striki ng	\| DEFORMATI ORE	Di sabl i ng/ Severe
AGE AND SEX:	17 Male	\| EXTRI CATI OR	Not Extricated
SEAT POS:	2nd Seat-left	1 EJ ECTI ON	Not Eject, NA
TIME OF DEATH	August 121989	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 481963 | AUTOPSY: NO
VEH CLE NUMBER: 2 | RACE: WHITE
PERSON NUMBER
    |
    .4
UNDERLYI NG CAUSE OF DEATH (E-CODE):
```

8199 Mbtor vehicletrafic accident of unspecified nature (unspecified person)
N CODE 9598 Other \& unspec ified injury to other specified sites, including multiple

State	Texas		\| ROAD:	Rural - Pr Art Oth	
DATE :	Sept enber 111989		\| SPEED LIMIT:	55	
DAY :	Monday		\| MANER OF COLL:	Head- on	
HOR:	7		\| FIRST HARM	Veh in Transp	
VEATHER :	Rai n		\| NO OF VEHS:	2	
BODY TYPE:	Picku		\| INITIAL IMPACT:	clocks	
VEH MANUER:	Going Straight		\| PRINCIPAL IMPACT:	Clock 5	
TAAV SPEED:	Unknown		\| MOST HARM	Fire/Explosion	
FI RE:	Fire in Veh		\| ROLLOVER:	No Rollover	
VEH CLE ROLE:	Stri ki ${ }^{\text {ng }}$		DEFORMATI ONE	Disabliog/Severe	
AGE AND SEX:	23 Male		\| EXTRICATION:	Not Extricated	
SEAT POS:	Front Seat-l eft		\\| EJ ECTI OK	Not Eject, NA	
TIME OF DEA	: September 111989	HOUR: 7	1 HOSPITAL:	No	

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 482076 | AUTOPSY: NOT STATED
VEH CLE NUMBER: 1 | RACE: BLACK
PERSON NUMBER: }
```

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8121 Other not or vehicle trafic accident invol ving collision with notor vehicle (passenger)

N CODE 9947 Asphyxi ation \& strangul ation

STATE :	Texas	\| ROAD:	Rural-Local Road
DATE :	Sept enber 231989	\| SPEED LIMIT:	55
DAY :	Sat urday	\| MANER OF COLL:	Head- on
HOUR:	0	\| FIRST HARM	Veh in Transp
VEATIER :	Nor mal	I NO OF VEHS:	2
BCDY TYPE:	3dr/2dr Hatchback	\| INTIAL IMPACT:	Cock 2
VEH MANUER:	Negotiating a Curve	\| PRI NCI PAL I MPACT:	Clock 2
TRAV SPEED	Unknown	\| MDST HARM	Fire/ Expl osi on
FI RE:	Fire in Veh	\| ROLCVER:	No Rollover
VEH CLE ROLE:	Striking	I DEFORMATI OK	Disabling/Severe
AGE AND SEX:	19 Male	\| EXTRI CATI ON:	Not Extricated
SEAT POS:	Front Seat-l eft	I EJ ECTI OK	Not Eject, NA
TIME OF DEATH	September 231989	\| HOSPI TAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
8199 Motor vehicle traffic accident of unspecified nature (unspecified person)
N-CODE 9947 Asphyxiation \& strangulation

STATE CASE:	482076	\| AUTOPSY: NOT STATED
VEHICLE NUMBER:	1	RACE: BLACK

VEHICLE NUMBER:
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGTT TRUCKS

STATE CASE:	462161	\| AUTOPSY:	YES
VEH CLE NUMBER:	1	\| RACE:	WH TE
PERSON NUMBER:	1		

UNDERLYI NG CAUSE OF DEATH (E-CODE):
8150 Other notor vehicle traffic acci dent invol ving collision on the highway (driver)

N-CODE 862 Injury to other \& unspecified intrathoracic organs
N CODE 666 Injury to other intra-abdominal organs

State :	Texas		\| ROAD:	Rural - Maj Collec	
DATE :	October 61969		\| SPEED LIMT:	55	
DAY	Fri day		\| MANER OF COLL:	Not applicable	
HOR :	0		\| FIRST HARM	Guardrai I	
VEATHER :	Nor mal		\| NO. OF VEHS:	1	
BODY TYPE:	4dr Sedan/ $\mathbf{H T}$		\| IN TIAL I MPACT:	O ock 11	
VEH MANVER:	Negotiating a Curve		\| PRINCIPAL IMPACT	Cock 11	
TRAV SPEED:	Unknown		\| MDST HARM	Fire/Explosion	
FIRE:	Fire in Veh		\| ROLLOER:	Subsequent Event	
VEH CLE ROLE:	Stri ki ${ }^{\text {ng }}$		I DEFORMATI ONE	Disabling/Severe	
AGE AND SEX:	26 Fenal e		\| EXTRI CATI ON:	Not Extricated	
SEAT POS:	Front Seat-l eft		\\| EJ ECTI OK	Not Ej ect, N A	
TIME OF DEATH	October 61989	HOR: 1	\| HOSPI TAL:	No	

1987-1989 FARS/mCOD DATA: DAIVER and Passenger fatalities in passenger cars and light trucks

$\begin{array}{lrl}\text { STATE CASE: } & 482181 & \text { | AUTOPSY: NO } \\ \text { VEHICLE NUMBER: } & 1 & \text { | RACE: WHITE }\end{array}$
PERSON NUMBER:
UNOERLYING CAUSE OF DEATH (E-CODE):
815
N-CODE 862 Injury to other \& unspecified intrathoracic organs N-CODE 868 Injury to other intra-abdominal organs
Clock 11
Fire/Explosion
Subsequent Event
Disabling/Severe
Not Extricated
Not Eject, N/A
No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 482181 | AUTOPSY: NO NHT TE l
```

VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 3 I
UNDERLYI NG CAUSE OF DEATH (E-CODE):
8151 Other notor vehicle traffic accident involving collision on the hi ghuay (passenger)
N-CODE 862 Injury to other \& unspecified intrathoracic organs
N-CODE 868 Injury to other intra-abdominal organs

1987-1989 FARS/MCOD DATA: ORIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE: 482293 | AUTOPSY: YES
 VEHICLE NUMBER:

PERSON NUMBER: 1 ! 1
UNDERLYING CAUSE OF DEATH (E-CODE):

901
Injury to blood vessels of thorax

N-CODE 803 Other \& unqualified skull fractures

N-CODE

Rural-Interstate
55
Mead-on Transp
2
lock
Clock 3
Fire/Explosion
No Rollover
Functional/Moderate
Not Extricated
Not Eject, N/A
안

HOUR: 3 | HOSPITAL:

September 301989
TIME OF DEATH:
AGE AND S
む
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALItIES in PASSENGER CARS AND LIGHT trucks
$\begin{array}{lrl}\text { STATE CASE: } & 482321 & \text { AUTOPSY: YES } \\ \text { VEHICLE NUMBER: } & 1 & \text { | RACE: } \\ \text { BLACK }\end{array}$
PERSON NUMBER
UNDERLYING CAUSE OF DEATH (E-CODE):
8150 Other motor vehicle traffic accident involving collision on the highway (driver)
N-CODE 854 Intracranial injury of other \& unspecified nature
1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

VEHICLE NUMBER:

PERSON NUMBER: 1 I
UNDERLYING CAUSE OF DEATH (E-CODE):
ING CAUSE OF DEATH (E-CODE):
8120 Other motor vehicle traffic accident involving collision with motor

Clock 12
Fire; Explosion
No Rollover
Disabling/Severe
Not Extricated
은

INITIAL IMPACT:
MOST HARM:
ROLLOVER:
DEFORMATION:
extaication:
| EJECTION:
| hOSPITAL
1987-1989 FARS/MCOD DATA: ORIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS
STATE CASE: 482347 | AUTOPSY: YES
VEHICLE NUMB
PERSON NUMBER:
UNDERLYING CAUSE OF DEATH (E-CODE):
8121 Other motor vehicle traffic accident involving collision with motor vehicle (passenger)
N•CODE 9598 Other \& unspecified injury to other specified sites, including multiple
\because
Texas
October
October 241989
Tuesday
Tuesday
Normal
Truck Based Utility
Going Straight
62 mph ven
Striking
47 Female
Front Seat-right
BODY TYPE:
STATE:
DATE:
DAY:
HOUR:
WEATHER
VEH MANUVER:
FIRE:
vehicle role:
AGE AND SEX:
SEAT POS:
TIME OF DEATH: October 241989 HOUR: 13 | HOSPITAL: HOUR: 13

1987-1989 fARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 482591 | AUTOPSY: YES
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 2 |
UNDERLYI NG CAUSE OF DEATH (E-CODE)
    8121 Other motor vehicle traffic accident involving collision with notor vehicle (passenger)
N-CODE 9598 Other & unspecified injury to other specified sites, including multiple
```

State :	Texas		\| ROAD:	Ruralrmaj Collec
DATE:	October 151989		\| SPEED LIMT:	55
DAY:	Sunday		\| MANER OF COLL:	Angle'
HOR:	21		\| FIRST HARM	Veh in Transp
VEATIER :	Nornal		\| NO. OF Vers:	2
BCDY TYPE:	Picku		[INITIAL I MPACT:	Clock 1
VEH MANVER:	Goi ng Strai ght		\| PRI NCI PAL IMPACT:	Clock 1
TRAV SPEED.	Unknown		\| MDST HARM	Fire/Explosion
FIRE :	Fire in Veh		\| RQLCVER:	No Rollover
VEH CLE ROLE:	Striking		\| DEFORMATION:	Disabling/Severe
AGE AND SEX:	18 Male		\| EXTRICATION:	Not Extricated
SEAT PDS:	Front Seat-ri ght		1 EJ ECTI ON	Not Eject, N A
TIME OF DEA	: October 151989	HOUR: 21	\| HOSPITAL:	No

1987-1989 FARS/MCOD DATA: DRIVER AND PASSENGER FATALITIES IN PASSENGER CARS AND LIGHT TRUCKS

STATE CASE:	482800	AUTOPSY: NO	
VEHICLE NUMBER:	1	RACE: WHITE	
PERSON NUMBER:	1		

UNDERLYING CAUSE OF DEATH (E-CODE):
8150 Other motor vehicle traffic accident involving collision on the highway (ariver)
N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple ROAD: SPEED LIMIT:
MANNER OF COLL: FIRST HARM:
NO. OF VEHS: INITIAL IMPACT: PRINCIPAL IMPACT: MOST HARM:
DEFORMATION:
EXtRICATION:
EJECTION:
HOUR: 8 HOSPITAL:
Texas
December 211989 Thursday
Normal
4dr Sedan/HT
Going Straight
Unknown
Striking
45 Male Front Seat-left
TIME OF DEATH: December 211989

STATE:
 DAY: HOUR: WEATHE

BODY TYPE:
VEH MANUVER:
VEHICLE ROLE:
AGE AND SEX:
SEAT POS:
SEAT POS:
No

1987-1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

STATE CASE:	482839	\| AUTOPSY:	NO
VEH CLE NUMBER:	1	\| RACE:	WH TE
PERSON NUMBER:	1	I	

UNDERLYI NG CAUSE OF DEATH (E-CODE):

8160 Mbtor vehicle trafic acci dent due toloss of control, without collision on the highay (driver)

N CODE 9598 Other \& unspecified injury to other specified sites, including multiple

1987. 1989 FARS/MCOD DATA: DRI VER AND PASSENGER FATALI TI ES IN PASSENGER CARS AND LI GHT TRUCKS

```
STATE CASE: 482839 | AUTOPSY: NO
VEH CLE NUMBER: 1 | RACE: WH TE
PERSON NUMBER: 2 |
```

UNDERLYI NG CAUSE OF DEATH (E-CODE) :
8121 Other not or vehicle traffic accident invol ving collision with motor vehicle (passenger)
N-CODE 9598 Other \& unspecified injury to other specified sites, including maltiple

$$
=1
$$

APPENDIX E

Summaries of 44 Texas Police Accident Reports (PARs) for 46 Vehicles that Experienced Fires and for which Fire or Explosion was a "Questionable" Coding of Most Harmful Event

FARS Case No	$\begin{aligned} & \text { Veh } \\ & \text { No. } \end{aligned}$	Per No.	Description
480115	1	$\begin{gathered} 1 \\ 2 \end{gathered}$	PAR: Vehicle one crossed the center line and skidded sideways into an on-coming vehicle two. The driver and passenger in vehicle one were killed. The driver sustained "head injuries, internal injuries." The passenger was "severed at torso, partially-burned, massive internal injuries" MCOD: (Driv) Internal injury to unspecified or ill-defined organs (Pass) Other \& unspecified injury to unspecified site
480219	2	1	PAP: Vehicle two "traveling at a high rate of speed" crossed the center line and was sideswiped by another vehicle. Approximately 200 feet after the initial impact, vehicle two struck a "large tree" and "exploded." The fatally-injured driver was simply described as "burned." MCOD: Other \& unspecified injury to other specified sites, including multiple
480236	2	1	PAP: A vehicle (a diesel tractor) was being towed down a divided US highway at what may have been "at an unsafe speed." The towed vehicle broke loose from the towing vehicle, crossed the median and struck vehicle two in the side. Vehicle two "burst into flames." The driver sustained burns: "subject burnt." MCOD: Other \& unspecified injury to other specified sites, including multiple

482109	1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	PAR: Vehicle one (a pickup) was towing a gooseneck semi-trailer on an interstate highway. The vehicle left the road, "...traveling down a steep embankment and crossing Loop 340 Northbound I-35 entrance ramp driving through a metal guardrail, knocking the rear axle out from underneath \#1 (the pickup). Both 1 and 2 (the gooseneck semi-trailer) then continued east down another steep embankment where \#1 jackknifed toward the south causing \#2 to break loose. \#1 then overturned one time, ejecting the driver and passenger out of the vehicle and then came to rest headed south on the west shoulder...." There was a "tire in vehicle" with the deceased driver (who was totally ejected) suffering "severe head lacerations, multiple bums" at least in part from the "rear window and front of towed vehicle." The deceased passenger (who was also totally ejected) sustained "severe head injuries" at least in part from the "top right door." MCOD: (Driv) Internal injury to unspecified or ill-defined organs (Pass) Internal injury to unspecified or ill-defined organs: Other \& unspecified injury to other specified sites, including multiple
482125	1	1	PAR: This crash involved a single vehicle leaving the roadway and striking "the corner of a bridge guard rail." "Upon impact Unit 1 burst into flames killing the driver inside the cab of the vehicle. The vehicle then slid down the culvert burning completely.. . ." The deceased driver's injuries were descried as "burned, head, chest." MCOD: Other and unspecified injury to other specified sites, including multiple
482620	1	1	PAR: "The explosion tore the cab from the frame of unit 1." The decedent suffered "Thermal Burns." MCOD: Intracranial injury of other $\&$ unspecified nature "Fire or explosion" is a defensible characterization of most harmful event. MCOD information may be incomplete.

482620	2	1	PAR: "Unit 2 was westbound on FM 53. Unit 1 was eastbound on FM 53 driving in the westbound lane. The driver of unit 1 did not know how to drive the vehicle, and was allowed to drive by the owner who was in the vehicle. Visibility because of a heavy fog. The two units collided FL to FL eight feet North of the center stripe in the westbound lane. Unit 1 drove onto unit 2 causing the left gas tank of unit 1 to rupture and explode, which tore the cab from the frame of unit 1. ." The deceased driver of vehicle two suffered a "crushed skull, thermal bums" MCOD: Crushing injury of multiple \& unspecified sites
482804	2	2	PAR: The second vehicle in this crash investigation (Unit \#2) first sideswiped another vehicle (Unit \#3) in the eastbound lanes of an interstate highway. Unit \#2 then went across the median (over a guardrail and chain link fence) and struck another vehicle (Unit \#1) sideways. "Unit \#2 overturned and burned in the middle of westbound lanes. Occupants of Unit \#2 ejected from vehicle." The deceased passenger (who was ejected) suffered "head injuries." MCOD: Intracranial injury of other \& unspecified nature; Internal injury to unspecified or ill-defined organs
482871	1	1	PAR: Vehicle one was pulling onto an interstate highway from the right shoulder when he was struck by vehicle three (a tractor trailer or semi-trailer). Vehicle one then struck vehicle two which was on the right shoulder. Vehicles one and two both burned. The injuries sustained by the deceased driver of vehicle one were coded as "chest \& head" caused by the "steering wheel \& dash." MCOD: Fracture of unspecified bones; Sprains \& strains of hip \& thigh; Other $\&$ unspecified injury to other specified sites, including multiple

480152	1	1	PAR: Vehicle two (a tractor and trailer or semi-trailer) jackknifed on an interstate highway, came across the median, and slid into vehicle one. The left side of vehicle two struck the front of vehicle one. "Both vehicles became engulfed in flames." The deceased driver of vehicle one suffered "head and chest injuries; burnt in fire." MCOD: Other \& unspecified injury to other specified sites, including multiple
480178	1	1	PAR: In this single vehicle crash, this vehicle struck a guardrail, maintained contact with the guardrail for 128 feet, was then airborne for 88 feet before landing on its top. Upon the investigating officer's arrival at the scene, the vehicle was "totally engulfed in flames." The injuries to the deceased driver were defined as "head, upper torso," caused by the top of the vehicle. MCOD: Intracranial injury of other \& unspecified nature
480179	1	1	PAR: The driver of vehicle one, "traveling at a high rate of speed (no brakes applied)," rear ended a parked tractor trailer or semi-trailer, displacing the tractor trailer or semi-trailer six feet and "bursting into flames." The fatally-injured driver of vehicle one sustained "multiple trauma and burned." MCOD: Injury to other \& unspecified intrathoracic organs; Injury to - other intra-abdominal organs.
480311	1	1	PAR: The driver vehicle one "either passed out or fell asleep" and struck a "concrete culvert head-on," suffering "multiple wounds on a!! parts of body with 2nd and 3rd degree burns." There were no other occupants in this vehicle. MCOD: Fracture of unspecified bones; Internal injury to unspecified or ill-defined organs

480363	1	1	PAR: "The vehicle ran off the right side of the road and ran onto and over a guard rail just before coming to a bridge. It then traveled on the grass beside the guard rail and bridge $173^{\prime} 4^{\prime \prime}$ before becoming airborne and collided into a street that ran underneath the bridge. It then bounced off the street and went airborne another $88^{\prime} 6^{\prime \prime}$ and collided into the embankment on the other side of the bridge and exploded into flames." The deceased driver's "body was burned." MCOD: Intracranial injury of other \& unspecified nature
480396	1	1 2 3	PAR: "According to witness, MV\#1 (vehicle one) passed him north-bound, 'at about a hundred miles an hour."' For some unknown reason, MV\#1's driver lost control of his truck. The vehicle ran up on the grass, after striking the curb. The truck careened back across the road $\&$ ran up on a center median. The truck appears to have been traveling sideways as it struck a large oak tree. The truck spun around after the impact, coming to rest next to the tree. The truck burst into flames as it came to rest. The witness was able to pull the driver out of the burning wreckage, but could not get to the passengers." For the three decedents, the driver was coded as having suffered "severe head trauma/burns," while the two deceased passengers sustained "severe bums." MCOD: (Driv) Intracranial injury of other \& unspecified nature (Pass) Intracranial injury of other $\&$ unspecified nature (Pass) Bum of unspecified site, unspecified degree
480534	2	1	PAR: Vehicle two was eastbound when it crossed the center line of a US highway and moved into the westbound lane. Vehicle one was in the westbound lane. The'two vehicles collided on the shoulder to the westbound lane. Both vehicles burned. The deceased driver of the second vehicle was "burned in vehicle." MCOD: Intracranial injury or other $\&$ unspecified nature [Note: The right-front passenger in the first vehicle involved in this crash was also fatally injured, "burned in vehicle." There was no MCOD information for this decedent.]

480680		1 2 3 4	Note: Six people riding in two vehicles were killed in this crash (480680). "Fire or Explosion" was the most harmful event for both vehicles. PAR: Vehicle one crossed the centerline of a US highway and struck vehicle two head on. The driver and a!! three passengers in the first vehicle were killed with the following ascribed injuries: (Driv) "crushed on impact-burned, broken neck" (Pass) "crushed on impact and burned" (Pass) "crushed on impact and burned" (Pass) "crushed and burned" MCOD: A!! four of the deceased were coded as: Other \& unspecified injury to other specified sites, including multiple
	2	1	PAR: The driver and passenger in the second vehicle were killed with the following ascribed injuries: (Driv) "crushed on impact and burned, broken neck" (Pass) "crushed on impact and burned" MCOD: Both of the deceased were coded as: Other \& unspecified injury to other specified sites, including multiple
480844	1	1	PAR: In this single vehicle crash, the vehicle "...struck bridge rail and bridge rail broke. Veh \#1 plunged approx. 35 ft to ground hit nose first and then onto top. After veh \#1 came to rest it burst into flame. Driver trapped in vehicle." The stated injury to the driver, the lone occupant of the vehicle, was: "burnt entire body." MCOD: Intracranial injury or other \& unspecified nature

480855		2	PAR: The driver of the second vehicle (with a BAC of 0.29 and "traveling at a greater speed than the posted limit of 50 mph) rear-ended another (first) vehicle that had just turned onto the highway from a private drive. The first vehicle "burst into flames." While the two vehicles were in contact, it appears that the second vehicle caught fire. The injuries sustained by 1 the driver and sole occupant of the second vehicle were: "broken neck, left arm \& leg/crushed chest \& abdomen/head \& upper torso-burned." MCOD: Injury to other $\&$ unspecified intrathoracic organs; Injury to other intra-abdominal organs
480879	1	2 3	PAR: "Veh \#1 traveled off roadway and into ditch. Veh traveled 130^{\prime} in ditch and struck culvert. Veh 1 was airborne another 40^{\prime} and struck concrete culvert. Veh then rolled once before coming to rest. Veh then caught fire after impact." All three occupants were killed. (Driv) "Burned" (Pass) "Burned - Head Injuries - Chest Injuries" (Pass) "Burned" MCOD: All three of the deceased were coded: "Other \& unspecified injury to other specified sites, including multiple"
481267	2	2	PAR: "Unit \#1 was descending a small hill and approaching a right curve at an unsafe speed. Vehicle failed to yield $1 / 2$ of roadway in the curve and struck Unit \#2 which was northbound. Vehicles met front left to front left. Unit \#2 was on right side of roadway. Point of impact was 3.5 feet from east edge of road." There is no mention of either vehicle in this crash experiencing fire. However, the deceased frontright passenger riding in the second vehicle was said to have "burned to death." The driver and back-right passenger sustained A-level and B-level injuries, respectively. MCOD: Other \& unspecified injury to other specified sites, including multiple

481380	1	2	PAR: "Vehicle ran off roadway on the right. Vehicle traveled down grassy roadside for approximately 300 A., traveling unobstructed. At a culvert (vehicle) struck some trees. Vehicle crossed the culvert being partially supported by left wheels traveling on culvert. Vehicle top was ripped off by more trees part-way across creek bed. Vehicle then struck east bank of creek and came to rest. At some point in time following this impact the vehicle caught fire." The fatallyinjured passenger in this vehicle was "burned - unable to determine any additional due to condition of body." MCOD: Other \& unspecified injury to other specified sites, including multiple
481582	1	1	PAR: This vehicle was struck in the right side by a train and "exploded." The vehicle came to rest approximately 120 feet from impact. Furthermore, the vehicle "overturned on deceased after being ejected - burned." Driver injuries were listed as: "chest trauma - burned." MCOD: Other \& unspecified injury to other specified sites, including multiple.
481773	1	1	PAR: The first vehicle crossed the center line on a curve a US highway posted at 55 mph and collided head on with a tractor semi-trailer. The fuel tank on the first vehicle (a pickup) ruptured and the first vehicle was engulfed in flames. The driver and passenger of the first vehicle were both killed. - Both decedents "... had multiple blunt impact injuries and were severely burnt beyond recognition." MCOD: The injuries for both decedents were listed as: Other \& unspecified injury to other specified sites, including multiple
481879	1	1	PAR: Vehicle 1 crossed a divided median on a US highway posted at 55 mph , struck two tractor semi-trailers, and "caught on fire." The deceased driver of the first vehicle "burned." MCOD: Other \& unspecified injury to other specified sites, including multiple

				PAR:The first vehicle collided with a second vehicle at a stop- controlled intersection. Subsequent to impact, the first vehicle rolled over (as indicated by the officer's sketch). Neither vehicle is said to have experienced a fire. However, the deceased front-right passenger of vehicle 1 "burned" and the part of the vehicle causing injury was listed as "engine - fuel." The driver of the vehicle sustained a B-level injury.
482412	1	MCOD:		
Other \& unqualified skull fracture; Other \& unspecified				
intracranial hemorrhage following injury.				

482801	2	1 2 3 4	Note: Six people riding in two vehicles were killed in this crash (48280 1). Both occupants of vehicle one were killed, but vehicle one apparently did not experience a fire. Al! four occupants of vehicle two died. Vehicle two experience a fire which was coded as the most harmful event. PAR: "Unit 1 apparently saw unit 2 on wrong side of road. Unit 1 pulled right, applied brakes, skidding approx. 28' on paved shoulder to POI (point of impact). Unit 1 rested upright headed south east approx. 38' east of POI. Unit 2 rested upright on fire, headed north approx. 80' east of POI." Officer was unable to determine which of the four decedents was driving. Recorded injuries were: (Pass 1) "head - internal" (ejected) (Pass 2) "head - chest - internal" (ejected) (Pass 3) "bums from vehicle fire" (Pass 4) "burned from vehicle fire - injuries unknown" MCOD: (Pass 1) Intracranial injury of other \& unspecified nature (Pass 2) Other \& unspecified injury to other specified sites, including multiple (Pass 3) Other \& unspecified injury to other specified sites, including multiple (Pass 4) Other \& unspecified injury to other specified sites, including multiple
482890	1	1	PAR: The first vehicle (unit one) struck a parked vehicle on the right side of a dirt, county road. Subsequent to impact, the driver of unit one was ejected. The vehicle then "... rotated $1 / 4$ time and slid in the loose dirt bouncing one time and came to rest on top of driver of unit one. Unit one burnt where it came to rest and also burned driver.," Injuries to driver: "severe skull fracture, punctured heart, burned beyond recognition" MCOD: Other \& unspecified injury to other specified sites, including multiple

480281		3	PAR: Vehicle three was stranded without power in a north bound traffic lane on an interstate highway. Vehicle one came over a hi!! crest and struck the disabled vehicle (i.e., vehicle three) which was 'knocked into" vehicle two on the service road beside the interstate highway. Vehicle three "burst into flames." The fatally-injured driver of this vehicle "burned" and sustained "unknown other injuries." MCOD: Intracranial injury of other \& unspecified nature; Other \& unspecified injury to face $\&$ neck; Other $\&$ unspecified injury to trunk
480566	1	1	PAR: In this single vehicle crash, the vehicle was "traveling at a high rate of speed" when it "lost control" sliding sideways into a sign post. Point of impact was the driver side of the vehicle. The driver and right front passenger were both killed. Both "burned." MCOD: Both driver and passenger sustained: Other \& unspecified injury to other specified sites, including multiple
480647	1	1	PAR: A single vehicle traveling "at a high rate of speed" ran off the road, traveled in the median for 301 ft before striking a concrete support pillar for a railroad overpass. The vehicle "caught on fire." The driver was "trapped in the vehicle" and "burned." MCOD: Other \& unspecified injury to other specified sites, including multiple
481613	1	1	PAR: In this single vehicle crash: "The driver fell asleep and ran off the left side of the road. The driver then woke up and attempted to steer unit \#1 back onto the road. Unit \#1 slid sideways and hit a culvert broadside. Unit \# 1 rolled onto its top and caught fire." MCOD: Other \& unspecified injury to other specified sites, including multiple

481638	4	1 3 4	PAR: Vehicle four was the last vehicle in a queue stopped on an interstate highway due to a previous crash. Vehicle one struck vehicle four from the rear. Vehicle four struck the vehicle in front of it and then turned over beside the road. Vehicle four burned. The driver and two of the three passengers were killed. All three decedents were coded to have "internal" injuries and to have "burned." MCOD: A!! three decedents were coded: Other \& unspecified injury to other specified sites, including multiple
481672	1	1	PAR: Vehicle one "crossed double line" and struck a tractor semitrailer with the left front of the vehicle. Vehicle one "exploded." The driver was "severely burned." MCOD: Other \& unspecified injury to trunk
481695	1	5	PAR: The vehicle (Unit 1) "... traveling at a high rate of speed, failed to negotiate a left curve partially leaving roadway to right. Driver cut back to left \& Unit 1 travels onto eastbound lane \& into westbound lane. Driver, unable to maneuver" vehicle properly because of crowded seating, cuts back to right. (At this point speed mathematically computed to 83 mph). Veh. continues off roadway to right $\&$ strikes a tree, spins around backwards and strikes a second tree, flipped over once, landing on its top and catches fire. The driver and three passengers were ejected from Unit. One passenger (\#5) was killed when pinned inside and underneath Unit 1 . Unit 1 then caught fire and burned." The decedent was "crushed by vehicle and burned." MCOD: Other \& unspecified injury to other specified sites, including multiple

481963		2	PAR: The second vehicle (a pickup truck) was struck head on by a tractor semi-trailer that crossed the centerline of a US highway posted at 55 mph . No mention is made of either vehicle catching fire, exploding, or burning. However, the driver of the pickup was "burned over 100% of body." 1 mote: The driver of the tractor semi-trailer (a vehicle type not considered in this study) also had "bums over 100% of body." MCOD: Other \& unspecified injury to other specified sites, including multiple
482076	1	1	PAR: Vehicle one "came around right hand curve at a high rate of speed" and "lost control and swerved off onto the N/B shoulder. The driver then over corrected and slid sideways in a counter clockwise direction back onto the road" where it struck a second vehicle. No mention is made of either vehicle catching on fire, exploding, or burning. The injuries sustained by the deceased driver and passenger: "unable to determine due to bums." MCOD: Both decedents were coded: Asphyxiation \& strangulation
482181	1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	PAR: "Unit \#l was east bound on TX 185 when for unknown reason, drifted left onto the opposite lane, continuing forward thus striking and straddling a guard-rail. As Unit \#1 continued forward, it started to overturn, turning counter clockwise. Unit \#1 then went airborne falling into a deep ditch, landing on it's top then was engulfed in flames." A!! three vehicle occupants were killed. The driver sustained "fatal bum injuries." One passenger sustained "fatal bum injuries, head injuries" and the other was "burned." MCOD: A!! three decedents received the same codes: Injury to other \& unspecified intrathoracic organs; Injury to other intraabdominal organs

482293	1	1	PAR: Vehicle one was headed in the wrong direction on an interstate highway when he collided with a tractor trailer. "After initial impact both vehicle(s) exploded and burned." "Both units were totally destroyed by fire." Injuries to the deceased driver of vehicle one were listed as: "skull fracture, transection of the descending thoracic aorta, burned beyond recognition." MCOD: Other \& unqualified skull fracture; Injury to blood vessels of thorax
482321	1	1	PAR: The driver of a stolen vehicle "appeared to have been going at a high rate of speed and lost control causing the vehicle to slide sideways before making impact with utility pole." The vehicle caught fire. The fatally injured driver was "burned." MCOD: Intracranial injury of other \& unspecified nature
482347	1	1 2	PAR: Vehicle one (pulling a 34 ' travel trailer and estimated to have been traveling in excess of 62 mph prior to braking) struck the rear of a second vehicle stopped in the highway due to a traffic backup resulting from construction. The trailer hitch on vehicle one broke, the tongue on the travel trailer moved forward rupturing the fuel tank on vehicle one and producing a fire that engulfed the vehicle in flames. Both the fatallyinjured driver and passenger in vehicle one sustained "blunt fore chest injuries, burns." MCOD: Both decedents were coded: Other \& unspecified injury to other specified sites, including multiple

An Addendum to an Assessment of the Reliability and Validity of the Information on Vehicle Fires Contained in the Fatal Accident Reporting System (FARS)

by
-

Lindsay I. Griffin, III

January 1998

Safety Division
Texas Transportation Institute
The Texas A\&M University System
College Station, Texas 77843

TABLE OF CONTENTS

Page

INTRODUCTION 1
ANALYSIS AND FINDINGS 3
COMMENT 13
REFERENCES 15
APPENDIX 16

LIST OF FIGURES

Page

Figure 1: Percent of Vehicles Experiencing Fire, by State 5
Figure 2: Odds of a Passenger Car or Light Truck Involved in a Fatal Crash Experiencing a Fire (1987-1989 vs 1994-1996), by State 7

Figure 3: Percent "Fire or Explosion" Coded as the Most Harmful Event, by State 9
Figure 4: Odds of a Passenger Car or Light Truck Involved in a Fatal Crash and Experiencing a Fire Having "Fire or Explosion" Coded as the Most Harmful Event (MHE) for that Vehicle (1987-1989 vs 1994-1996), by State 11

LIST OF TABLES

Page
Table 1: Passenger Cars and Light Trucks Selected from FARS by Body Type, 1987-1989 vs. 1994-1996 2
Table 2: Vehicle Fires Reported in FARS by State, 1987-1989 vs. 1994-1996 4
Table 3: Fires as First harmful Events in FARS by State, 1987-1989 vs. 1994-1996 8

INTRODUCTION

A previous report (Griffm, 1997) considered the consistency with which two, fire-related variables in the Fatal Accident Reporting System (FARS)-fire experience (FIRE-EXP) and "fire or explosion" as the most harmful event (MHE)-were reported by the states (for crash-involved passenger cars and light trucks). This report compares some of the findings from the previous report (based on 1987-1989 FARS data) to a newer data set (FARS 1994-1996).

In the previous report, the 1987-1989 data set of passenger cars and light trucks was defined on body type (BODY-TYP $=01,02,03,04,05,06,07,08,09,10,11,12,50,51,53,54,55,56$, $58,59,67,68,69$, or 79). Due to changes in the coding of body type, it was necessary to redefine the codes representative of passenger cars and light trucks in 1994-1996 to produce a comparable set of data. Twenty-six codes (i.e., body types) were selected to represent passenger cars and light trucks in the 1994-1996 dataset (BODY-TYP $=01,02,03,04,05,06,07,08,09,10,11,14,19$, $29,30,31,32,33,39,40,41,15,16,45,48$, or 79). These 26 codes were chosen for their comparability to the vehicle codes contained in the previous data set.

Of the 185,409 vehicles contained in FARS in 1987-1989, some 147,253 (79.42 percent) were classified as passenger cars or light trucks in the previous report. Of the 168,532 vehicles contained in FARS 1994-1996, some 133,928 (79.47 percent) were classified as passenger cars or light trucks by the definition used in this report. The frequencies and percentages of the different body types included in the 1987-1989 data set and the 1994-1996 data set are shown in Table 1.

Two basic analyses are undertaken in this report. The first considers how consistently the states report the "fire experience" (FIRE EXP) of crash-involved passenger cars and light trucks in 1994-1996 and, granted that a vehicle experienced a fire, how consistently the states report "fire or explosion" to be the most harmful event (MHE) for the occupants of vehicles that experience tire. The second analysis considers how consistently the states report vehicle fires (FIRE_EXP) and "fire or explosion" as the most harmful event for a vehicle's occupants in 1994-1996 when compared to their reports in 1987-1989.

Table 1: Passenger Cars and Light Trucks Selected from FARS by Body Type, 1987-1989 vs. 1994-1996				
	[1987-1989]		[1994-1996]	
Body Type	Frequency	Percent	Frequency	Per cent
Converti ble	729	0. 5	807	0.6
2dr Sedan/HT/Coupe	54153	36.8	31453	23.5
3dr/2dr Hat chback	3896	2. 6	6051	4.5
4dr Sedan/HT	37124	25.2	44122	32.9
5dr/4dr Hatchback	1000	0.7	1592	1.2
Station Magon	6750	4.6	4103	3.1
Hatchback/unk drs	214	0.1	171	0.1
Other auto	11	0.0	714	0.5
Unk auto type	4950	3.1	2380	1.8
Auto Pi ckup	568	0.4	309	0.2
Auto Panel	22	0.0	7	0.0
Short Util/not Trk Based	1399	. 1.0		
Truck Based Utility	3677	2.5		
Compact Utility		.	7536	5. 6
Large Utility			1577	1.2
Utility Station Magon			877	0.7
Utility Unk Body		.	38	0.0
Unknown Van type			193	0.1
Pi ckup	29831	20. 3		
Compact Pi ckup			12701	9.5
Standard Pi ckup			18253	13. 6
Pi ckup w Camper	92	0.1	266	0.2
Convertible Pickup			4	0.0
Unknown Pickup			303	0.2
Cab Chassis Based	305	0. 2	412	0.3
Truck Based Panel	13	0.0	1	0.0
Truck Based SW	647	0.4		
Other Lt Conventional	46	0.0	3	0.0
Unk Lt Conventional	1130	0.8	34	0.0
SW Base Body Unk	5	0.0		
Utility, Base Body Unk	47	0. 0		
Unknown Li ght Truck *	195	0.1		
Unk Trk Type	904	0.6		
Unknown Truck			21	0.0
	147253	100.0	133928	100.0

ANALYSIS AND FINDINGS

VEHICLES EXPERIENCING FIRES

Table 2 depicts the 147,253 crash-involved vehicles from 1987-1989 and the 133,928 crashinvolved vehicles from 1994-1996, by state. In 1987-1989, some 3,963 vehicles (2.69 percent) experienced fires. In 1994-1996, some 3,552 vehicles (2.65 percent) experienced fires. The percent (PCT) of vehicles experiencing fires in each state is shown.

Figure 1 depicts the 1994-1996 percent of vehicles that experience fires in each of the 50 states and the District of Columbia, with 95 percent confidence intervals placed around each estimated percent.' The vertical line in this figure represents the national average "fire experience" for passenger cars and light trucks in fatal crashes: 2.65 percent. Fifteen states have "fire experiences" that are significantly below the national average (UT, MS, NM, ID, MT, FL, MD, VA, SC, CO, NJ, NY, MI, AL, and TX) and 12 states have "fire experiences" that are significantly above the national average (OR, IN, ND, OH, AR, OK, MO, WI, IL, NC, AZ, and CA).

The variability in the individual state expressions (estimates) of vehicles experiencing fires is great. A chi-square $\left(\chi^{2}\right)$ analysis of these data suggests that it is highly unlikely that all of the states and the District of Columbia are consistently measuring the same phenomenon, i.e., a common 2.65 percent of vehicles experiencing tires $\left[\chi^{2}=473.77\right.$ (with 50 df); $\mathrm{pr}=0.000$]. ${ }^{2}$

Returning to Table 2 and considering the last column in this table: the Z statistics presented in this table compare the proportion of vehicles experiencing fires in 1987-1989 and 1994-1996 for each state. Using Arizona as an example, note that the proportion of vehicles experiencing fires in Arizona in 1994-1996 is greater than the proportion of vehicles experiencing fires in Arizona in 19871989. This increase in the proportion of vehicles experiencing fires is significant at $a=0.05$ ($Z=$ 3.21). For Hawaii, the proportion of vehicles experiencing fires in 1994-1996 is smaller than the proportion experiencing fires in 1987-1989. This reduction is significant at $a=0.05(Z=-2.84)$,
${ }^{1}$ See Appendix A to Griffin, 1997 for the derivation of these confidence intervals.
${ }^{2}$ See Appendix B to Griffin 1997 for the derivation of this χ^{2}
${ }^{3} \mathrm{Z}$ was calculated as:

Where,

$$
Z=\frac{p_{2}-p_{1}}{\sqrt{p(1-p)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$\mathrm{p}=$ proportion of vehicles experiencing fires in a given state (across all years)
$\mathrm{p}_{1}=$ proportion of vehicles experiencing fires in a given state in 1987-1989
$\mathrm{p}_{2}=$ proportion of vehicles experiencing fires in a given state in 1994-1996
$\mathrm{n},=$ number of crash-involved vehicles in a given state in 1987-1989
$\mathrm{n}_{2}=$ number of crash-involved vehicles in a given state in 1994-1996

Figure 1: Percent of Vehicles Experiencing Fire, by State

Triangles pointing up (A) in Table 2 indicate a significant increase in the proportion of vehicles experiencing fires (at $\mathrm{a}=0.05$); triangles pointing down $(\boldsymbol{\nabla})$ indicate a significant decrease in the proportion of vehicles experiencing fires (at $\mathrm{a}=0.05$).

Figure 2 depicts the odds of a crash-involved vehicle experiencing a fire in 1994-1996 relative to the odds of a crash-involved vehicle experiencing a fire in 1987-1989, by state. That is to say, the individual data points in Figure 2 represent the 50 states and the District of Columbia.

To understand this figure, consider the data point in the lower right portion of this figure that represents Hawaii. In 1987-1989 Hawaii reported that 23 vehicles experienced fires and 411 did not. In 1994-1996 Hawaii reported that 6 vehicles experienced fires and 372 did not. Or, the odds of a vehicle tire in Hawaii in 1987-1989 were 0.0560 (23/411). In 1994-1996 the odds were 0.0161 (6/372).

The dashed line in Figure 2 is the best estimate of the overall change in the odds of a vehicle experiencing fire in 1994-1996 relative to 1987-1989. The slope on the dashed line is 0.9862 : Or, generally speaking, the odds of a tire in 1994-1996 are 0.9862 times as large as the odds of a fire in 1987-1989. This 1.38 percent reduction in the odds of a fire in 1994-1996 (relative to 1987-1989), however, is not significant, $\left[\chi^{2}=0.35\right.$ (with 1 df); $\left.\mathrm{pr}=0.554\right]$. See the Appendix.

If the odds of a fire had been reduced by 1.38 percent in each of the 50 states and the District of Columbia, all 51 data points would have fallen on the dashed line. But, the data points are highly scattered around the dashed line, indicating that the reduction in the odds of a fire was inconsistent from state to state between 1987-1989 and 1994-1996. The variability (or inconsistency) among the states is significant, $\left[\chi^{2}{ }_{(50)}=149.66 ; \mathrm{pr}=0.000\right]$. See the Appendix.

FIRE AND EXPLOSION AS MOST HARMFUL EVENT

Table 3 depicts the 3,963 crash-involved vehicles that experienced fires between 1987 and 1989 and the 3,552 crash-involved vehicles that experienced fires between 1994 and 1996, by state. In 1987-1989, some 1,207 vehicles (30.46 percent) were coded with "fire or explosion" as the MHE. In 1994-1996, some 927 vehicles (26.10 percent) were coded with "fire or explosion" as the MHE. The percent (PCT) of vehicles for which "fire or explosion" was coded as the MHE are shown.

The proportions of vehicles for which "fire or explosion" was coded as the MHE varied by state from 1987-1989 to 1994-1996. Those states with upward-pointing triangles (A) saw a significant increase (at $\mathrm{a}=0.05$) in the proportion of vehicles for which "fire or explosion" was coded as MHE; those states with downward-pointing triangles (\boldsymbol{v}) saw a significant reduction (at $\mathrm{a}=0.05$).

Figure 3 depicts the percents of vehicles for which "fire or explosion" was the most harmful event in 1994-1996 in 40 states and the District of Columbia, with 95 percent confidence intervals placed around each estimated percent. The vertical line in this figure represents the national average: 26.10 percent of all vehicles experiencing fire were also classified with "fire or explosion" as the MHE. Nine states are significantly above the national average (NE, LA, MD, ME, NY, FL, MO, AL,

Figure 2: Odds of a Passenger Car or Light Truck Involved in a Fatal Crash Experiencing a Fire (1987-1989 vs 1994-1996), by State

Table 3: Fires as First Harmful Events in FARS by State, 1987-1989 vs. 1994-1996

STATE	FI RE		$\begin{aligned} & \text { [1987-1989] } \\ & \text { NO } \end{aligned}$		TOTAL	$\begin{aligned} & 11 \\ & 11 \\ & 11 \end{aligned}$		[1994-1996]		TOTAL	1 Z		
			FI RE	PCT			FIRE	FIRE	PCT				
ALABAMA	1	0	2270	23. 91	92		31	46	40. 26	77	2. 28	A	
ALASKA			4	0. 00	4	11		8	0.00	8	1 .		
ARIZONA	1	-40	30'	44.44	54	1	24	77	23. 76	101	-2.65	∇	
ARKANSAS	I	230	50	44.44	90		123	58	28. 40	81	-2.17	∇	
CALIFORNIA	1		45	40.00	575	1	164	245	40. 10	409	10.03		
COLORADO	1	9	28	24. 32	37	11	\| 11	25	30.56	36	10.60		
CONECTI CUT		8	46	14. 81	54		0	25	0. 00	25	- 2.03	V	
DELAMARE	I	2	13	13. 33	15	11	0	11	0. 00	11	\| -1.26		
							1			3	\| 1.25		
BLORICAA COLUMBIA	I	24.	107	18. 32	134	$\\|$	\$4	52	78. 63	111	15.03	A	
GEORG A	1	27	138	16. 36	165	1	7	144	4.64	151	1-3.36	V	
HAWAI I	13	34	19	17. 39	23	1	1	5	16. 67	6	I -0.04		
I DAHO			6	33. 33	9	11	5	4	55. 56	9	0.95		
ILLINOIS	\|	1	179	0. 56	180		11	163	6. 32	174	13.00	A	
INDIANA	1	44	68	39. 29	112		\\| 25	122	17.01	147	\| -4.02	∇	
1 OAA		14	65	17.72	79	1	10	35	0.00	35	\|-2.66	∇	
KANSAS	1	2	41	4.65	43		,	44	2. 22	45	1-0.63		
KENTUCKY	\|	13	86	13. 13	99		\| 24	63	27. 59	87	1 2.46	A	
LOUISIANA	1	57	63	36. 36	99	1	155	20	73. 33	75	I 4.84	A	
MAINE	1	23	6	53. 85	13		8	4	66. 67	12	0.65		
MARYLAND			24	48.94	47	11	\| 19	8	70. 37	27	1. 79		
massachusetts	1	14	67	17. 28	81		13	43	6. 52	46	\| -1.71		
MICHIGAN	1	15	146	9. 32	161	1	125	79	24. 04	104	\| 3.27	A	
M NNESOTA	I	2	80	13. 98	93	11	7	58	10. 77	65	\|-0.60		
M SSI SSI PPI	1	84	27	6. 90	29		9	12	42.86	21	\| 3.03	A	
MISSOURI			41	67.20	125	1	156	77	42. 11	133	\| -4.04	V	
MONTANA	1	10	5	66.67	15		0	7	0. 00	7	-2.92	V	
NEBRASKA	1	7	13	35. 00	20	11	117	6	73. 91	23	\| 2.56	A	
NEVADA	1	6	16	27.27	22		0	27	0. 00	27	\|-2.90	V	
NEW HAMPSH RE	1	1	14	6.67	15	11	2	8	20.00	10	\| 1.01		
NEW J ERSEY	1	53	48	5. 88	51		14	32	30.43	46	I 3.18	A	
NEW MEXI CO	1	45	18	21. 74	23		4	9	30.77	' 3	\| 0.60		
NEW YORK			78	36. 59	123	1	150	51	49.50	101	\| 1.95		
NORTH CAROLI NA	,	36	55	39.56	91		8	152	5. 00	160	\|-6.92	∇	
NORTH DAKOTA	1	1	3	25. 00	4		2	10	16. 67	12	\|-0.37		
OHO	1	3	161	1. 83	164	11	8	188	4.08	196	\| 1.24		
OKLAHOMA	1	17	87	3. 33	90		1	95	1. 04	96	\|-1.08		
OREGON			66	20.48	83		12	65	15. 58	77	\| -0.80		
PENNSYLVAN A	1	48	123	28.07	171		135	90	28.00	125	\|-0.01		
RHODE ISLAND SOUTH CAROLINA	1	0 40	4	$\begin{array}{r} 0.00 \\ 90.91 \end{array}$	8 44		0 1	3 0	$\begin{array}{r} 0.00 \\ 100.00 \end{array}$	3 50	$\begin{array}{ll} 18 \end{array}$	A	
SOUTH DAKOTA	1	1	13	7. 14	14		2	15	11. 76	17	10.43		
TENESSEE		65	55	54. 17	120		142	78	35. 00	120	\|-2.99	∇	
TEXAS	1	1111	97	60.89	248	11	\| 79	159	33. 19	238	\| -6.11	∇	
UTAH	1	0	0	100.00	1		0	03	0. 00	3	\|-2.00	∇	
VERMONT			9	0.00	9	11	4	8	33. 33	12	I 1.93		
V RG N A	1	47	2	95.92	49		3	34	8. 11	37	\| -8. 17	∇	
WASH NGTON	1	12	40	27. 27	55	11	9	44	16. 98	53	\|-1.29		
WEST VIRGNA	I	29	22	35. 29	34	11	7	25	21.88	32	\|-1.20		
W SCONSI N			61	32. 22	90	11	114	73	16. 09	87	\|-2.50	∇	
W0MING	1	$\begin{array}{r} 0 \\ -1207 \end{array}$	$\begin{gathered} 5 \\ 2756 \end{gathered}$	0. 00	5 3963	11	$\frac{0}{927}$	$\begin{gathered} 8 \\ 2625 \end{gathered}$	0.00	8 3552	$1 \quad$		

Figure 3: Percent "Fire or Explosion" Coded as the Most Harmful Event, by State

CA) ; 12 states are significantly below the national average (IN, WS, OR, MN, VA, MA, IL, NC, $\mathrm{GA}, \mathrm{OH}, \mathrm{KS}$, and OK). ${ }^{4}$

The variability in the individual state codings of "fire or explosion" as the MHE is great. A \&i-square (χ^{2}) analysis of these data suggests that it is highly unlikely that a!! of these states and the District of Columbia are consistently measuring the same phenomenon, i.e., a common 26.10 percent of vehicles coded with "fire or explosion" as MHE $\left[\chi^{2}=391 . \mathrm{OO}\right.$ (with 40 df); $\mathrm{pr}=0.000$]. ${ }^{5}$

Figure 4 depicts the odds of a vehicle being coded with "fire or explosion" as MHE in 19941996 relative to $1987-1989$, by state. ${ }^{6}$ The dashed line in Figure 4 is the best estimate of the overall change in the odds of a vehicle being coded with "fire or explosion" as MHE. The slope on the dashed line is 0.7899 . Or, generally speaking, the odds of a vehicle being coded with "fire or explosion" as the MHE in 1994-1996 are 0.7899 times as large as the odds of a vehicle being coded with "fire or explosion" as the MHE in 1987-1989. This 21.01 percent reduction in the odds of MHE being a "fire or explosion" between 1987-1989 and 1994-1996 is significant, $\left[\chi^{2}=17.34\right.$. (with 1 df); $\mathrm{pr}=0.000]$. See the Appendix for the derivation of this χ^{2}.

[^6]| | MDST HARMFUL EVENT | |
| :---: | :---: | :---: |
| STATE | FI RE | OTHER |
| AK | $\mathbf{0}$ | $\mathbf{8}$ |
| CT | $\mathbf{0}$ | 25 |
| DE | 0 | 11 |
| IA | $\mathbf{0}$ | 35 |
| MT | 0 | 7 |
| NV | 0 | 27 |
| RI | 0 | 3 |
| SC | 50 | 0 |
| UT | 0 | 3 |
| VY | 0 | 8 |
| | $\underline{50}$ | $\underline{127}$ |

[^7]SC: the odds of "fire or explosion" in 1994-1996 were infinite
UT: the odds of "fire or explosion" in 1987-1989 were infinite
VA: the odds of "fire or explosion" in 1987-1989 were 23.5, off the scale used in Figure 4

It should be quickly pointed out, however, that the apparent 21.01 percent reduction in the odds of a vehicle being coded with "fire or explosion" as the MHE is not consistent across the states. That is to say, the data points in Figure 4 are widely scattered about the dashed line. Different states are showing significantly different "rates of change" in the odds of a vehicle being coded with "fire or explosion" as the MHE between 1987-1989 and 1994-1996, [$\chi_{(47)}^{2}=408.40 ; \mathrm{pr}=$ O.OOO]. See the Appendix for the derivation of this χ^{2}. ${ }^{7}$
${ }^{7}$ Three states were omitted from this analysis (AK, RI, and WY), None of these states coded any vehicles in the 1987-1989 or the 1994-1996 data with "fire or explosion" as the MHE. Thus the degrees of freedom in this analysis were reduced from 50 to 47 .

[^0]: ${ }^{6}$ To repeat the operative part of the FARS definition of most harmful event contained in the 1988 Coding and Validation Manual:
 ". choose the event which causes the greatest number of fatalities to occupants of this vehicle . ."

[^1]: ${ }^{8}$ The Texas accident report form (ST-3) does not contain a specific data element entitled "most harmful event," i.e., the investigating officer does not code MHE. Therefore, the FARS coders at the Texas Department of Public Safety must determine "most harmful event," based primarily upon (1) information contained in the officers' narratives, (2) supplemental descriptions of the injuries sustained by the deceased provided in the "Texas Peace Officers Accident Casualty Supplement," and (3) the death certificate.

[^2]: ${ }^{9}$ If all states were to specifically record "fire occurrence" and "most harmful event," it is likely that these two data elements would become more reliable. The increased reliability of the coding of these two elements, however, is no guarantee that the elements would provide valid depictions of vehicle fires and most harmful events. The codes could be reliable, but inaccurate.

[^3]: 路

[^4]: N-CODE 9598 Other \& unspecified injury to other specified sites, including multiple neote

[^5]: STATE CASE: 480879 | AUTOPSY: NO
 VEHICLE NUMBER
 PERSON NUMBER:
 UNDERLYING CAUSE OF DEATH (E-CODE):

[^6]: ${ }^{4}$ Ten states were omitted from this figure to avoid dividing by zero or taking the natural logarithm of zero when calculating the confidence intervals. For nine of the states that were omitted from Figure 3, no vehicles were coded with "fire or explosion" as the MHE. For one state (SC), al! 50 vehicles that experienced a fire were coded with "fire or explosion" as the MHE.

[^7]: ${ }^{5}$ See Appendix B to Griffin 1997 for the derivation of this χ^{2}.
 ${ }^{6}$ Three states were omitted from Figure 4:

