Proposed Vehicle-level Bonfire Test for Hydrogen-fueled Vehicles

by

R. Rhoads Stephenson Motor Vehicle Fire Research Institute www.mvfri.org

Outline

- NHTSA H₂ R&D Plan
- High Pressure Cylinder tests
 - FMVSS 304 for CNG
 - Hydrogen burst test
- Proposed Vehicle System-Level Test
- Other Topics
 - Fuel System Integrity (FMVSS 301)
 - Pressure Relief Device Standard
 - Hydrogen Leaks Inside Buildings
- Conclusions

NHTSA 4-Year H2 Vehicle R&D Plan

- Available at www.nhtsa.dot.gov
 - Click on Docket Management System
 - Do simple search on 18039
 - Download document 3
 - Comments from MVFRI are document 5
 - Comments were desired by Oct 12, but you can still submit if you wish

NHTSA 4-Year H2 Vehicle R&D Plan

- R&D Tasks include
 - Component level testing
 - Onboard refueling system performance testing
 - Full vehicle performance testing
 - Corporate Average Fuel Economy (CAFE)
 - International Harmonization of codes and standards

NHTSA 4-Year H2 Vehicle R&D Plan

- Major Comments
 - Determine leak limits by experiment not by selecting same energy release rate as gasoline
 - Improve FMVSS 304 bonfire test
 - PRDs also need a standard
 - Gather accident data on NG & H₂ vehicles
 - Tanks may be weaker in crashes at less than full pressure

High Pressure Cylinder Tests (FMVSS 304)

- Bonfire test is routinely done for CNG
- A similar test has been drafted for H2
- Bare tank and PRD are exposed to bonfire for 20 minutes. Must either:
 - Remain intact, or
 - Vent safely
- Problems
 - Fire not well specified just temperatures under tank
 - PRD must be shielded from direct flame impingement

304 Test on CNG tank

FMVSS 304 - Conclusions

- Tank Burst is very energetic
 - Mechanical energy is released in milliseconds
 - Unacceptable to have tank burst
 - PRD *must* work
- 304 is mainly a PRD test not a tank test
 - No modern composite tank will last for 20 minutes

Hydrogen Burst Test

• Goals:

(1) to study the temperature and fire resistance of the tank and the temperature and pressure its contents prior to burst
(2) to determine the characteristics of the energy release from a fire induced burst

Performed 304-like test w/o PRD

Instrumentation

- -Tank internal temperature and pressure
- -Exterior temperatures
- –Blast pressures at 4 locations
- -Visual and IR video

Burst Test

Burst Test Conclusions

• Temperature and pressure inside tank increased a negligible amount

- Temperature up 20 C

– Pressure up 200 psi

- Largest fragment (14 Kg) landed 270 feet away
- 43 psi overpressure at 6.3 feet
- 6 psi overpressure at 21 feet

Burst Test Conclusions

It is unacceptable for a H2 tank to burst!!

The PRD valve must work!

Conclusions (continued)

- Successful operation of PRD is a systemlevel issue
 - Number and location of tanks
 - Plumbing
 - Number and location of PRDs
 - Redundant PRDs?
 - Sizing of vent lines
 - Shielding and insulation of tanks
- A bare tank with a single PRD does not simulate a real vehicle

System-Level Bonfire Test

- Europeans require bonfire test on plastic fuel tanks – ECE R-34 Annex 5
- Test is not required in the US, but most tanks sold in US are qualified with this test

ECE R-34 Test

- Whole vehicle or buck used
- Tank is filled 50% with gasoline
- Exposed to gasoline pool fire
 - One minute at full heat flux
 - One minute with ceramic screen which cuts heat flux
- The tank "passes" if it survives for 2 minutes of exposure

ECE R-34 Test on Vehicle

Observations

- Tank "passed" the test at 2 minutes
- Tank failed 7 seconds later
- Two minutes may be long enough for an uninjured person to escape
 - It is clearly too short if the occupant needs to be extricated

Proposed System Level Test for H2

- Composite hydrogen tanks are plastic
- Why not apply something similar to European test?
- It tests the whole system
- It is independent of the hydrogen storage technology
 - Compressed gas
 - Liquid Hydrogen
 - Hydrides

Modifications

- Replace gasoline pool fire with a propane planer flame – diffused through sand
 - Easier to control
 - Less air pollution concern
- Exposure duration ?
 - Suggest 20 minutes like FMVSS 304
 - Must either vent safely or stay intact

Future Work

- Issue to study
 - Passenger compartment may become untenable well before 20 minutes
- Debug the test procedure
- Recommend to NHTSA

Allowable Leak Rate for Hydrogen (FMVSS 301 modified for H₂)

- 301 allows 1 ounce per minute of gasoline
- Set at lowest level practical to measure
 - Not determined by flame spread tests
- Some propose H₂ leak rate to give same energy release rate as gasoline
- Could measure smaller leaks with H₂, but
- Larger leaks may be acceptable
- Better to base on untenability experiments

H₂ PRD Draft Standard

- Available from CSA-America julie.cairns@csa-america.org
- Major Comments
 - Activation time may need to be faster
 - Document the rationale for all numbers
 - Vendors should have Quality Plans also
 - Mark distinctly from NG PRDs

Parsons-Brinkerhoff Facility Study

- Available at <u>www.cafcp.org</u>
- Assumptions
 - 4 types of parking facilities
 - H₂ leak at 20 CFM
 - Wheel well sensors will shut off supply
 - No ignition sources within 2 feet of vehicle
- Results
 - No special ventilation required
 - "None of the recommendations in this report are ready for implementation"

Facility Study (continued)

- Major Comments
 - Need to consider PRD release scenarios and leaks upstream of the pressure regulator
 - There are ignition sources in and around the vehicle
 - Need independent validation and documentation of computer simulations

Conclusions

- A vehicle-level bonfire test has been proposed
- Base post-crash allowable leak rate on flame spread tests – not gasoline equivalent energy
- Improvements to PRD standard are suggested
- More research is needed on H₂ leaks in buildings